Problems

1. Calculate the packing density of the body centered cubic, the face centered cubic and the diamond lattice, listed in example 2.1 p 28.

2. At what temperature does the energy bandgap if silicon equal exactly 1 eV?

3. Prove that the probability of occupying an energy level below the Fermi energy equals the probability that an energy level above the Fermi energy and equally far away from the Fermi energy is not occupied.

4. At what energy (in units of \(kT\)) is the Fermi function within 1% of the Maxwell-Boltzmann distribution function? What is the corresponding probability of occupancy?

5. Calculate the Fermi function at 6.5 eV if \(E_F = 6.25\) eV and \(T = 300\) K. Repeat at \(T = 950\) K assuming that the Fermi energy does not change. At what temperature does the probability that an energy level at \(E = 5.95\) eV is empty equal 1%.

6. Calculate the effective density of states for electrons and holes in germanium, silicon and gallium arsenide at room temperature and at 100 °C. Use the effective masses for density of states calculations.

7. Calculate the intrinsic carrier density in germanium, silicon and gallium arsenide at room temperature (300 K). Repeat at 100 °C. Assume that the energy bandgap is independent of temperature and use the room temperature values.

8. Calculate the position of the intrinsic energy level relative to the midgap energy

\[E_{\text{midgap}} = \left(\frac{E_c + E_v}{2}\right)\]

in germanium, silicon and gallium arsenide at 300 K. Repeat at \(T = 100\) °C.

9. Calculate the electron and hole density in germanium, silicon and gallium arsenide if the Fermi energy is 0.3 eV above the intrinsic energy level. Repeat if the Fermi energy is 0.3 eV below the conduction band edge. Assume that \(T = 300\) K.

10. The equations (2.6.34) and (2.6.35) derived in section 2.6 are only valid for non-degenerate semiconductors (i.e. \(E_v + 3kT < E_F < E_c - 3kT\)). Where exactly in the derivation was the assumption made that the semiconductor is non-degenerate?

11. A silicon wafer contains \(10^{16}\) cm\(^{-3}\) electrons. Calculate the hole density and the position of the intrinsic energy and the Fermi energy at 300 K. Draw the corresponding band diagram to scale, indicating the conduction and valence band edge, the intrinsic energy level and the Fermi energy level. Use \(n_i = 10^{10}\) cm\(^{-3}\).

12. A silicon wafer is doped with \(10^{13}\) cm\(^{-3}\) shallow donors and \(9 \times 10^{12}\) cm\(^{-3}\) shallow acceptors. Calculate the electron and hole density at 300 K. Use \(n_i = 10^{10}\) cm\(^{-3}\).

13. The resistivity of silicon wafer at room temperature is 5 Ωcm. What is the doping density? Find all possible solutions.

14. How many phosphorus atoms must be added to decrease the resistivity of n-type silicon at room temperature from 1 Ωcm to 0.1 Ωcm. Make sure you include the doping dependence of
the mobility. State your assumptions.

15. A piece of n-type silicon \((N_d = 10^{17} \text{ cm}^{-3})\) is uniformly illuminated with green light \((\lambda = 550 \text{ nm})\) so that the power density in the material equals 1 mW/cm\(^2\). a) Calculate the generation rate of electron-hole pairs using an absorption coefficient of 10\(^4\) cm\(^{-1}\). b) Calculate the excess electron and hole density using the generation rate obtained in (a) and a minority carrier lifetime due to Shockley-Read-Hall recombination of 0.1 ms. c) Calculate the electron and hole quasi-Fermi energies based on the excess densities obtained in (b).

16. A piece of intrinsic silicon is instantaneously heated from 0 K to room temperature (300 K). The minority carrier lifetime due to Shockley-Read-Hall recombination in the material is 1 ms. Calculate the generation rate of electron-hole pairs immediately after reaching room temperature. \((E_t = E_i)\). If the generation rate is constant, how long does it take to reach thermal equilibrium?

17. Calculate the conductivity and resistivity of intrinsic silicon. Use \(n_i = 10^{10} \text{ cm}^{-3}\), \(\mu_n = 1400 \text{ cm}^2/\text{V-sec}\) and \(\mu_p = 450 \text{ cm}^2/\text{V-sec}\).

18. Consider the problem of finding the doping density which results the maximum possible resistivity of silicon at room temperature. \((n_i = 10^{10} \text{ cm}^{-3}\), \(\mu_n = 1400 \text{ cm}^2/\text{V-sec}\) and \(\mu_p = 450 \text{ cm}^2/\text{V-sec}\).\)

Should the silicon be doped at all or do you expect the maximum resistivity when dopants are added?

If the silicon should be doped, should it be doped with acceptors or donors (assume that all dopant are shallow).

19. Calculate the maximum resistivity, the corresponding electron and hole density and the doping density.

20. The electron density in silicon at room temperature is twice the intrinsic density. Calculate the hole density, the donor density and the Fermi energy relative to the intrinsic energy. Repeat for \(n = 5 n_i\) and \(n = 10 n_i\). Also repeat for \(p = 2 n_i\), \(p = 5 n_i\) and \(p = 10 n_i\), calculating the electron and acceptor density as well as the Fermi energy relative to the intrinsic energy level.

21. What photon energy (in electron volt) corresponds to a wavelength of 1 micron? What wavelength corresponds to a photon energy of 1 eV?

22. 1 billion photons with a wavelength of 0.3 micron hit a detector every second. How large is the incident power?

23. The expression for the Bohr radius can also be applied to the hydrogen-like atom consisting of an ionized donor and the electron provided by the donor. Modify the expression for the Bohr radius so that it applies to this hydrogen-like atom. Calculate the Bohr radius of an electron orbiting around the ionized donor in silicon. \((\varepsilon_r = 11.9 \text{ and } m_e^* = 0.26 m_0)\)

24. Calculate the density of electrons per unit energy (in electron volt) and per unit area (per cubic centimeter) at 1 eV above the band minimum. Assume that \(m_e^* = 1.08 m_0\)
25. Calculate the probability that an electron occupies an energy level which is $3kT$ below the Fermi energy. Repeat for an energy level which is $3kT$ above the Fermi energy.

26. Calculate and plot as a function of energy the product of the probability that an energy level is occupied with the probability that that same energy level is not occupied. Assume that the Fermi energy is zero and that $kT = 1$ eV

27. The effective mass of electrons in silicon is $0.26 m_0$ and the effective mass of holes is $0.36 m_0$. If the scattering time is the same for both carrier types, what is the ratio of the electron mobility and the hole mobility.

28. Electrons in silicon carbide have a mobility of $1000 \text{ cm}^2/\text{V}-\text{sec}$. At what value of the electric field do the electrons reach a velocity of $3 \times 10^7 \text{ cm/s}$? Assume that the mobility is constant and independent of the electric field. What voltage is required to obtain this field in a 5 micron thick region? How much time do the electrons need to cross the 5 micron thick region?

29. A piece of silicon has a resistivity which is specified by the manufacturer to be between 2 and 5 Ohm cm. Assuming that the mobility of electrons is $1400 \text{ cm}^2/\text{V}-\text{sec}$ and that of holes is $450 \text{ cm}^2/\text{V}-\text{sec}$, what is the minimum possible carrier density and what is the corresponding carrier type? Repeat for the maximum possible carrier density.

30. A silicon wafer has a 2 inch diameter and contains 10^{14} cm^{-3} electrons with a mobility of $1400 \text{ cm}^2/\text{V}-\text{sec}$. How thick should the wafer be so that the resistance between the front and back surface equals 0.1 Ohm.

31. The electron mobility is germanium is $1000 \text{ cm}^2/\text{V}-\text{sec}$. If this mobility is due to impurity and lattice scattering and the mobility due to lattice scattering only is $1900 \text{ cm}^2/\text{V}-\text{sec}$, what is the mobility due to impurity scattering only?