Homework #3 assigned 4/4/01 due 4/11/01

HW3.1 Consider a p-MOS inverter consisting of a p-MOS driver transistor with \(W/L = 6 \) and a p-MOS load device with \(W/L = 1 \). The power supply voltage, \(V_{DD} \), is -10 V and the gate of the load device is connected to \(V_{DD} \). Calculate and plot the transfer characteristic (output voltage versus input voltage) of this inverter for an input voltage varying from 0 V to -10 V. The p-MOS devices are made on a n-type, 2 \(\times \) \(10^{15} \) cm\(^{-3} \) doped substrate, have an aluminum gate, \(\Phi_M = 3.94 \) V, \(\chi = 4.05 \) V, and a 0.08 \(\mu \)m thick gate oxide. Use the table in the back of the book for the physical constants and use a hole mobility of 450 cm\(^2\)/Vs.

HW3.2 Repeat 3.1 for an inverter whose load device has \(W/L = 0.5 \), and plot the transfer characteristic on the same plot.

HW3.3 Repeat 3.1 for an inverter with a resistor as load device (\(R = 5 \) K\(\Omega \)), and plot the transfer characteristic again on the same plot.

HW3.4 Design a circuit (analog or digital) with about 10 p-MOS transistors. The circuit can include resistors and capacitors but not inductors. Assume a metal gate process. Provide a circuit diagram, indicating the values of the circuit parameters. Calculate the \(W/L \) ratio of all the p-MOS transistors in your circuit.

HW3.5 Assume a silicon metal gate CMOS process where the gate metal is aluminum (\(\Phi_M = 3.94 \) V, \(\chi = 4.05 \) V) and the gate oxide is 0.1 \(\mu \)m thick.

a) Find the n and p-type doping concentrations for the substrate and the well for which the threshold voltages of the n-MOS and p-MOS transistor are \(V_{Tn} = 1 \) Volt and \(V_{Tp} = -1 \) Volt. Solve this problem graphically by plotting \(V_{Tn} \) and \(V_{Tp} \) versus doping concentration. Make sure that your solution is within 10 % of the exact solution by scaling the graph appropriately. Provide the graph with your solution.

b) Is a p-type well or an n-type well required to satisfy the above threshold voltage requirement? How does this compare to the example in the book?