Problem O.2. Effects of op-amp imperfections in a basic non-inverting amplifier

In the non-inverting amplifier shown below, the feedback resistances are $R_1 = 10 \, \text{K}\Omega$, and $R_2 = 1 \, \text{M}\Omega$. The load resistance is $R_L = 2 \, \text{K}\Omega$. You can neglect the resistance tolerances. The supply voltages are $V_{CC} = V_{EE} = +2.5 \, \text{V}$. The input voltage v_I has zero DC component, $V_I = 0$. The op-amp is LMH6642 (see the attached data sheet). Given the specified supply voltages, note that you should consider 5V Electrical Characteristics of the op-amp in this problem.

\[R_2 \]
\[R_1 \]
\[R_x \]
\[\text{v}_I \]
\[V_{CC} \]
\[V_{EE} \]
\[v_O \]
\[v_x \]
\[R_L \]

a) From the op-amp data-sheet, find the following parameters at room temperature (25°C):
- The minimum value of the op-amp open-loop gain A_o (hint: see the entry for A_{vol} in the data sheet)
- The maximum input offset voltage V_{OS}
- The typical input offset voltage drift $\Delta V_{OS}/\Delta T$
- The maximum input bias current I_B
- The maximum input offset current I_{OS} (note that the ± sign is incorrectly missing in the data sheet)
- The typical output voltage swing limits V_{omin}, V_{omax}.
- The typical input common-mode voltage range limits, V_{CMmin}, V_{CMmax}.

b) Choose R_x to minimize the worst-case DC output voltage V_O of the amplifier. For this R_x, find the worst-case DC output voltage at room temperature, taking into account the values for V_{OS} and I_{OS} from part (a).

c) Taking into account the result from part (b), and the voltage swing limits V_{omin}, V_{omax} from part (a), find the maximum amplitude V_{imax} of the input signal v_I such that the output stays undistorted, i.e. so that the output v_O stays within the saturation limits. For this V_{imax}, do the op-amp input voltages stay within the input common-mode voltage range?