A1.1. Series Resonant Converter M(Q,F)

The following routine correctly computes the voltage conversion ratio \(M \) as a function of \(Q \) and \(F \). It is assumed that the converter operates with linear resistive load \(R \), and \(Q = R_0 / R \). The algorithm and equations used are described in section 4.5.

```plaintext
function M(Q,F)
{computation of series resonant converter M, as a function of
load Q and frequency F}
define k,ksi,g,qgt,cgt,tgt,mr,k1
\( g = \pi / F \) \{gamma\}
\( k = \text{INT}(1/F) \) \{check for mode\}
\( k1 = \text{INT}(0.5 + \sqrt{0.25 + Q * \pi / (2 * F)}) \)
if k1 > k
{type k CCM}
\( ksi = k + (1 + (-1)^k) / 2 \) \{subharmonic number\}
\( qgt = Q * g / 2 \) \{intermediate variable\}
\( cgt = (\cos(g/2))^2 \) \{intermediate variable\}
\( tgt = (\tan(g/2))^2 \) \{intermediate variable\}
{mr contains the result M}
if F = 1/ksi
mr = F \{tangent function may give unpredictable
results at resonance and subharmonics\}
else
mr = qgt / (ksi^4 * tgt + qgt^2) * ((-1)^k) + SQRT(1 + (ksi^2 -
cgt) * (ksi^4 * tgt + qgt^2) / (qgt^2 * cgt))
end if
else
{type k1 DCM}
if k1/2 = INT(k1/2)
{even DCM}
mr = 2 * k1 * F / (PI() * Q)
else
{odd DCM}
mr = 1/k1
end if
end if
return mr
end function
```

A1.2. Parallel Resonant Converter M(J,F)

The following routine computes the operating point of the parallel resonant converter. It works in both the continuous conduction mode and the discontinuous conduction mode, provided that \(F \geq 0.5 \). The CCM solution is a straightforward application of Eqs. (5-31) and (5-35). In the case of the discontinuous conduction mode, Eqs. (5-45) must be solved iteratively. Doing so is
not straightforward, and can become an exercise in numerical analysis methods. The routine
below first finds the solution for $\xi = \alpha + \beta$. This is done by combining the third and
fourth lines of Eq. (5-45) to obtain

$$G_f(\xi) = \cos \xi + 0.5 (2J - \gamma)^2 + 0.5 \xi^2 + (2J - \gamma) \xi \sin \xi + \xi \sin \xi - 1$$

This equation is solved iteratively. Once ξ is known, the other angles (α, β, and δ) can be
evaluated directly, and then M can be found.

The routine first searches for the neighborhood of the root by simply evaluating G_f at
regular intervals (note that ξ can take on values between 0 and γ), beginning at $\xi = \gamma$. Once G_f
changes polarity, the routine uses Newton’s method to converge quickly to the root.

```matlab
function M(J,F)
% computation of parallel resonant converter M, as a function of load current J 
% and frequency F
% (equations are valid only for F>0.5)

define phi, g, qgt, jcrit, mr, phicrit, ksi1, ksi2, ksi3, G1, G2, G3, 
  convg, epsln, a, b, d, dc, ic, kc, Gc, dG1, jsc 

% initial condition 
G = PI() / F % gamma 

% check for mode 
if F<0.5
   return "invalid F"
end if 
jcrit = Jcr(g)
if j < jcrit % CCM
   phi=Fphi(J,g)
   mr = (2/g)*(phi-sin(phi)/cos(g/2)) 
else % DCVM 
   jsc=0.5*g 
   if J>jsc
      mr="error: I>short ckt current"
      return mr
      exit function 
   end if 
   % find neighborhood of root where convergence is likely
   dc=0.1
   Gc=1
   while Gc>0
      kc=g
      Gc=Gf(kc,J,g)
      dc=dc*0.1
      ic=dc*g
      while ((Gc>0) and (kc>0))
         kc=kc-ic
         Gc=Gf(kc,J,g)
      end while 
   end while 
   ksi2=kc 
   ksi1=kc+ic 
% (iteration: Newton's method)
convg=0.000001 % criterion to test convergence
```
Appendix 1. Computer Listings

epsln=0.1 {factor to reduce gain of iteration algorithm}
G1=Gf(ksi1,J,g)
dG1=dGf(ksi1,J,g)

while abs(G1)>convg {iteration loop: ksi = alpha + beta}
 ksi3=ksi1-epsln*G1/dG1
 G1=Gf(ksi3,J,g)
 dG1=dGf(ksi3,J,g)
 ksi1=ksi3
end while

a = acos(0.5*(1+cos(ksi3)))
b = ksi3-a
d = g-b
mr = 1+(2/g)*(J-d)
end if

return mr
end function

Other functions called by the function M(J,F)

function Gf(k,J,g)
{function required for iteration in DCVM}
define r,u
 u=2*J-g
 r=cos(k)+k*sin(k)+0.5*(u^2+k^2)+u*(k+sin(k))-1
return r
end function

function dGf(k,J,g)
{derivative of Gf, used for Newton iteration method}
define r
 r=k*cos(k)+k+(2*J-g)*(1+cos(k))
return r
end function

function Jcr(g)
{evaluation of Jcrit, the critical value of J. CCM for J<Jcrit, DCVM for J>Jcrit}
define r
 r=-0.5*sin(g) + sqrt((sin(g*0.5))^2+0.25*(sin(g))^2)
return r
end function

function Fphi(J,g)
{evaluation of the angle phi, needed for CCM solution}
define r
 r = acos(cos(g/2)+J*sin(g/2))
 if g<pi()
 r=-r
 end if
return r
end function

A1.3. Other functions for evaluation of stresses and other quantities, for the parallel resonant converter

The functions below evaluate the boundary values M_{C0} and J_{L0}. Also listed are routines for determination of peak stresses M_{CP} and J_{LP}, as well as functions which indicate the operating
mode and whether the converter operates with zero current or zero voltage switching at the given
operating point. These functions require that M, J, and γ all be specified; it is intended that M(J,F)
be used first to solve iteratively for the operating point, and then the results used in the routines
below. All functions operate correctly for both CCM and DCM. They use the relevant equations
of Chapter 5.

Boundary values M_{C0} and J_{L0}

function $Mco(M,J,g)$
{evaluation of tank capacitor initial voltage Mco, given the steady state solution $M,J,$ and gamma}
define d,b,r,jcrit,phi
jcrit=Jcr(g)
if J>jcrit
 {DCM soln}
d=J−(g/2)∗(M−1)
b=g−d
r=1−cos(b)
else
 {CCM soln}
phi=Fphi(J,g)
r=−J∗sin(phi)/cos(g*0.5)
end if
return r
end function

function $JLo(M,J,g)$
{evaluation of tank inductor initial current JLo, given the steady state solution $M,J,$ and gamma}
define d,b,r,jcrit,phi
jcrit=Jcr(g)
if J>jcrit
 {DCM soln}
d=J−(g/2)∗(M−1)
b=g−d
r=J+sin(b)
else
 {CCM soln}
phi=Fphi(J,g)
r=−(J^2-1)*tan(g*0.5)
end if
return r
end function

Peak stresses J_{LP} and M_{CP}

function $JLpk(M,J,g)$
{evaluation of peak tank inductor current $JLpk$, given the steady state solution $M,J,$ and gamma}
define d,b,r,jcrit,phi,j1,j10
jcrit=Jcr(g)
if J>jcrit
 {DCM soln}
d=J−(g/2)∗(M−1)
Appendix 1. Computer Listings

b=g-d
if (g-d)<pi()/2
 r=JLo(M,J,g)
else
 r=J+1
end if
else
 {CCM soln}
 phi=Fphi(J,g)
 j10=JLo(M,J,g)
 if ((Mco(M,J,g)<1) and (j10>0))
 r=j10
 else
 j1=-sin(phi)/cos(0.5*g)
 r=J+sqrt((j1-J)^2+1)
 end if
end if
return r
end function

function MCpk(M,J,g)
{evaluation of peak tank capacitor voltage MCpk, given the
steady state solution M, J, and gamma}
define d,b,r,jcrit,phi,mc0,jl0,j1
jcrit=Jcr(g)
jl0=JLo(M,J,g)
if J>jcrit
 {DCM soln}
 d=J-(g/2)*(M-1)
 b=g-d
 if jl0>J
 mc0=Mco(M,J,g)
 r=sqrt((mc0+1)^2+(J-jl0)^2)-1
 else
 r=2
 end if
else
 {CCM soln}
 phi=Fphi(J,g)
 if jl0>J
 mc0=Mco(M,J,g)
 r=sqrt((mc0+1)^2+(J-jl0)^2)-1
 else
 j1=-sin(phi)/cos(0.5*g)
 r=1+sqrt((j1-J)^2+1)
 end if
end if
return r
end function

function ZCVS(M,J,g)
{determination of whether the converter operates with zero current
or zero voltage switching at the designated operating point}
define r,jl0
jl0=JLo(M,J,g)
if jl0<0
 r="ZCS"
else
 r="ZVS"
end if
return r
end function

function PRCmode(J,g)
{determination of operating mode}
define jcrit,jsc,r
if g>2*pi()
 return "mode unknown: F<0.5"
 exit function
end if
if J<0
 return "invalid: J<0"
 exit function
end if
jcrit=Jcr(g)
jsc=0.5*g
if J<jcrit
 return "CCM"
else
 if J>jsc
 return "no soln: J>jsc"
 else
 return "DCVM"
 end if
end if
end function