More about the zero-voltage switching boundary

(of the active-clamped forward converter)

The resonant transition associated with the turn off of Q_1 and the turn on of Q_2 is relatively easy:

The positive i_m plus the positive reflected load current (i_L) both combine to charge v_{ds} up to $V_g + V_b$. Partway through this transition, D_3 becomes reverse-biased and i_L is zero; if v_{ds} is not yet charged up to $(V_g + V_b)$ at this point, then enough magnetizing current must be left to finish the job. Nonetheless, this is the easier ZVS transition.

The resonant transition associated with the turn off of Q_2 and the turn on of Q_1 normally requires more energy stored in i_m.

At the beginning of this transition, D_3 is reverse-biased and $i_L = 0$. The negative magnetizing current in D_3 discharges v_{ds} from $(V_g + V_b)$ to V_g (subinterval 6). Diode D_3 then becomes forward-biased and the load current begins shifting from D_4 (during subinterval 7).
to D_3. At the same time, i_m continues to discharge C_{as} and V_{ds}. Note that, although $i_m(t)$ is negative, the reflected $i_C(t)$ is positive. For ZVS to occur, the magnitude of the negative $i_m(t)$ must be greater than the reflected load current for the entire time needed to discharge V_{ds} to zero and for the gate driver to turn on Q_1. Note that a reduced transformer coupling coefficient, which implies larger L_e and smaller L_M, tend to help this process. Indeed, a large L_e allows the magnetizing current to discharge C_{as} with minimal need to overcome the reflected load current; as usual, the disadvantage of this is the corresponding reduction in effective duty cycle caused by the increase in the length of subinterval t.