Front-end power supply with power factor correction

Conventional PWM forward converter

- $V_g = 270-380V$
- $V_{ds}(t)$
- $max \ V_{ds} = 2V_g + \text{ringing, } = 760V + \text{ringing}$
- $P \approx 200W$
- $D \leq \frac{1}{2}$
- On-state transistor current $= \frac{P}{V_g D}$
- I
Magnetizing current must operate in DCM!

- Peak transistor voltage occurs while transformer is being reset.
- We could reset the transformer with less peak voltage if we used the discontinuous interval.
The active clamp forward converter

Q1 and Q2 are driven as in the half-bridge circuit:

Q1 gate drive

\[\text{on} \quad \text{off} \]

\[DT_3 \quad T_3 \]

Q2 gate drive

\[\text{off} \quad \text{on} \]

\[D' T_3 \quad T \]

- Better utilization of transformer and transistors
- Zero-voltage switching, related to QSW and ZVT (somewhat)
- Not limited to \(D \frac{T}{2} \)
Approximate analysis: hard-switched case, ignore resonant transitions and dead time

Transformer primary voltage, magnetizing current:

\[v_{pri}(t) \rightarrow V_s \]

\[\rightarrow D T_s \rightarrow \]

\[\leftarrow D T_s \rightarrow \]

\[-V_b \]

\[t \]

\[i_M(t) \uparrow \]

\[\frac{V_s}{L_M} + \Delta i_m \]

\[\frac{-V_b}{L_M} \]

\[0 \]

\[t \]

Voh-sec balance: \(D V_s - D' V_b = 0 \)

\[V_b = \frac{D}{D'} V_b \]

Charge balance on \(C_b \):

\(\langle i_b(t) \rangle \uparrow \)

\[\text{equal areas} \]

\[-\Delta i_M \text{ must } = -(\text{peak}) \]

so that \(\langle i_b \rangle = 0 \)

\(\langle i_M \rangle = 0 \) implies that \(\langle i_b \rangle = 0 \)
V_b can be viewed as a flyback converter output, in which the flyback converter consists of L_m (buck-boost inductor), Q_1 (transistor), and Q_2/D_2 (output diode, bidirectional switch). By use of a current bidirectional switch, there is no discontinuous conduction mode, and L_m operates in CCM.

The peak transistor voltage is

$$\text{max } V_{ds} = V_g + V_b = V_g \left(1 + \frac{D}{D'}\right) = \frac{V_g}{D'}$$

which is less than the conventional value of $2V_g$ when $D > \frac{1}{2}$. To appreciate the benefit of this, let's consider a design example:

270V $\leq V_g \leq$ 350V

200W load

Conventional case: peak $V_{ds} = 2V_g + \text{ringing}$

= 700V + \text{ringing}
Let \(\max D = 0.5 \) \((\text{at } V_g = 270 \text{ V})\)

then \(\min D \) \((\text{at } V_g = 350 \text{ V})\) is
\[
\frac{(0.5)(270)}{(350)} = 0.3857
\]

the on-state transistor current, neglecting ripple, is given by

\[
<i_g> = D \times I = D \times i_{d-on}
\]

with \(P = 200 \text{ W} = V_g <i_g> = D \times V_g \times i_{d-on} \)

so \(i_{d-on} = \frac{P}{D \times V_g} = \frac{200 \text{ W}}{(0.5)(270 \text{ V})} \approx 1.5 \text{ A} \)

active clamp case:

\(1\) suppose we choose the same turns ratio. Then \(D \) is the same: 0.3857 < 0.5

and \(i_{d-on} \) is the same. But the peak \(V_{ds} \) is \(\frac{V_g}{D} \)

<table>
<thead>
<tr>
<th>(V_g)</th>
<th>(D)</th>
<th>peak (V_{ds})</th>
</tr>
</thead>
<tbody>
<tr>
<td>270</td>
<td>0.5</td>
<td>540V</td>
</tr>
<tr>
<td>350</td>
<td>0.3857</td>
<td>570V</td>
</tr>
</tbody>
</table>

which is considerably lower than 700V.
(2) Suppose we operate at a higher duty cycle, say \(D = 0.5 \) at \(V_g = 350\,V \).

Then peak \(V_{ds} = \frac{350}{1-\frac{1}{2}} = 700\,V \) (same as conventional).

but we can use a lower turns ratio that leads to lower reflected current in \(Q_1 \):

\[
I_{d-on} = \frac{P}{D \cdot V_g} = \frac{200\,W}{(\frac{1}{2}) \cdot (350\,V)} = 1.15\,A
\]