// Interrupt Exercise

#include <8051int.h>
#include <8051reg.h>
#include <8051io.h>

#define BUSY_MASK 0x80
#define WRITE_OPERATION 0x22
#define READ_OPERATION 0x44
#define COMMAND_REGISTER 0xF000
#define DATA_REGISTER 0xF001
#define STATUS_REGISTER 0xF002

void device_write(); //Function prototype

unsigned char ii; //Loop variable
unsigned char *eptr; //Pointer to external memory space

main()
{
 serinit(9600); //Initialize serial to 9600 baud
 enable(); //Enable interrupts
 init_interrupts(); //Assume this function exists
 ii=0; //Initialize loop variable
 while(1) {
 device_write(ii++); //Write value, then increment ii
 ii=ii%254; //ii sequences from 0 to 254
 }
}

// To write to this device, first you wait until the busy flag is
// clear. Then send the write command to the command register and
// then you send the data value to the data register
void device_write(unsigned char value)
{
 eptr=STATUS_REGISTER;
 while((*eptr & BUSY_MASK) != 0); //Wait until busy flag clear
 eptr=COMMAND_REGISTER;
 *eptr=WRITE_OPERATION; //Identify this as a write operation
 eptr=DATA_REGISTER;
 *eptr=value; //Write the value
}

// Assume Timer 0 interrupt occurs every 20ms
INTERRUPT(_TF0_) timer0int() {
 printf("Timer 0 Interrupt\n");
}

// Assume external interrupt 0 occurs every 2 seconds
INTERRUPT(_IE0_) ext0int() {
 device_write(0xff); //write value 255
}

// Assume external interrupt 1 occurs every 10 seconds
INTERRUPT(_IE1_) ext1int() {
 asm {
 CPL P1.1
 RETI
 }
}