Lab Overview

In this lab assignment, you will do the following:
- Learn how to use the ASM51 (or AS31) assembler and Emily52 simulator.
- Plan the layout of your development board and obtain your parts kit.
- Build your basic hardware, consisting of a board, standoffs, power connector, voltage regulator, power on LED, power switch, microcontroller, reset circuit, oscillator, Port 0 pull-up resistors, 74LS08 AND gate, 74LS373 latch, and RS-232 connector.

The software portion of this lab assignment is due by **Wednesday, February 1, 2006**.
This entire lab assignment is due by **Saturday, February 11, 2006**.
The deadline for Lab #1 (when the report must be turned in) is **Wednesday, February 15, 2006**.

This lab is easier than the following labs and it is weighted as a small part of your course grade. The reason for making this lab easier is to give you a chance to come up to speed on basic hardware and firmware concepts, to make sure that you have all the parts you need to do the assignment, and to make sure that you have access to the lab and the lab equipment is all functional. **The following lab assignments will be more involved and more time consuming, so you will have to plan your time wisely.**

Lab Details

1. Obtain access to the lab. You will need a Buff OneCard in order to enter the locked doors. If you are not a matriculated student and do not have a Buff OneCard, you can obtain a guest card for the semester for $5. You will need to get this card from the Buff OneCard office. You will need to provide your Buff OneCard number to the ECE Department in order to gain access to the labs.

2. For the software part of this lab, you will need to use the ASM51 or AS31 assemblers and the Emily52 simulator. You may use the licensed tools installed on the computers in the lab, or you can obtain a copy of the Emily52 demo kit from http://www.dunfield.com/products/emily52.htm. This demo kit comes as a self-extracting .exe file, and includes a version of both the ASM51 assembler and the Emily52 simulator, as well as three example files. Refer to the assembler and simulator homework assignments given previously for more information.

3. Write a single assembly language program which meets the following criteria:
 - The program starts at address 0000h.
 - If at any time the accumulator reaches a value of greater than 50h (including the starting value), then the program jumps to the END label and no further values are written to external memory.
 - The program loops a maximum of 10 times. The first time through the loop, the value in the accumulator is written to external data memory starting at location 0100h. In each successive loop, the accumulator is incremented and the new value is written to the next successive location in external memory. After the last loop is executed, the program jumps to a label named 'END' and writes the number of times the loop executed into internal memory (IRAM) at address 20h. The program should then terminate, by using an illegal instruction which will stop Emily52.

 Refer to the test1.asm and test3.asm files distributed with the demo version of Emily52 for hints. Test your program with Emily52 by setting the accumulator to various values. **Note:** Use a combined code and data space in the 8051 (/overlap option). Practice using the various capabilities of Emily52.

4. For the demo, be able to change the value in the accumulator using Emily52 (during program execution). Make sure your program can correctly handle different starting values in the accumulator.

5. [Optional] Skim the article "Handling of Power Plastic Transistors", available in the laboratory. You should always take care not to stress the pins or packaging of any electronics.
6. Obtain a parts kit for the lab (available by 1/28/2006).

- Wire wrap wire may be obtained in the laboratory. Please only take what is required to implement your microcontroller board (please only take 2-3 yards of each color needed at a time).
- Soldering irons and solder will be available in the laboratory.
- Please leave the lab equipment in the lab, make sure to turn off the soldering irons, and make sure the door to the adjoining lab ECEE 1B24 is closed and locked when you leave.
- You may sign out a tool kit with wire wrap tool, cutters, needle nose mini-pliers, power supply, and RS-232 cable for the semester. Some digital logic probes are also available.

7. If you don't have experience with soldering electronics, read the article "A Guide to Better Soldering", available in the laboratory or visit http://www.metcal.com and read about soldering techniques and tips. Answer the following questions for yourself:

- Why is flux used? What type of flux should be used with electronic circuits? Will flux remove grease from a connection point?
- What is a cold solder joint, and how is it created?

8. Your initial hardware assignment will be to implement your core microcontroller design. The basic circuit elements consist of an 80C51 microcontroller with power-on and run-time reset circuitry and an 11.0592MHz crystal oscillator, a 7805 (or 340T5) +5V voltage regulator, and hardware, such as your PCB, standoffs, power connector, 9-pin RS-232 connector, etc.

Design your power supply circuit and draw a schematic using Orcad Capture. You should include the 2.1mm power jack, power switch, the 7805 voltage regulator, and a power-on LED which glows whenever power is applied to your board. Some starter schematics are on the course web site.

Design your oscillator circuit using the 11.0592 MHz crystal and the 27pF capacitors and add this circuit to your schematic.

Design your power-on reset circuit with run-time reset capability. Include an RC circuit and a pushbutton. You may choose to mount the pushbutton on the top or the bottom of your board.

9. You will be using the 6"x8" printed circuit board (PCB) from your parts kit.

Study the schematics included in the document "ECEN 5613 PCB Layout and Partial Schematics", which is available on the course web site. The schematics show you some of the circuit connections that are present on your PCB. Note that not all of the components shown in the partial schematics will end up being populated on your board; the components are in the schematics so that pads (through hole or surface mount) would be present in the PCB design. You will need to determine which components you will need to load during the semester.

10. **Before soldering in any components and before using your bare PCB**, you should test to make sure that you do not have any short circuits. Using a multimeter, test between your +5V and ground connection to verify that there is an open circuit between power and ground. If you catch a PCB flaw at this point, you won't waste time debugging your board after you've added your circuits.

 Study your PCB carefully and compare it to the partial schematics. Use a multimeter to learn how the power and ground planes on your board are designed. Are they connected directly to the VCC and GND pins on each chip? Are they connected directly to the VCC and GND headers distributed around the board? Which of the capacitors in the partial schematics are through hole and which are surface mount technology (SMT)?

11. Spend some time planning your layout (see the "Example Board Layout" document provided). A lot can be learned from laying out a circuit poorly, but it's usually much easier to correct an error at the layout stage of the game rather than after you have already soldered in chips and wrapped 50 wires. You will want to try to keep your wires short to minimize noise problems. To help in development, you will probably use standoffs to support your board in its four corners. It is recommended not to drill any additional holes in your PCB, as you take the chance of damaging existing traces or shorting together the VCC and GND planes. In addition, it is suggested that you leave a keep-out area (perhaps...
0.5" to 0.8" wide) around the edge of your board, so that you can add connectors or other parts later in
the semester. **NOTE:** Parts to be added to your board this semester include a 32KB EPROM; a 32KB
SRAM; supporting glue logic, such as your decoding circuits, pull-up resistors and an address/data
line demultiplexer; a MAX232 RS-232 line driver/receiver; 8-pin serial EEPROM, and an LCD. You
need to leave room for these parts on your board.

12. Using a marker or pen, neatly print your name and the text "ECEN 4613 S2006" or
 "ECEN 5613 S2006" in the big white space on the bottom side of the PCB.

13. Insert the wire wrap socket(s). Carefully solder the wire wrap sockets to the PCB. If you examine
 the PCB carefully, you'll notice that not all the pins for each chip have electrical connections on the board
 - the VCC pin, GND pin, and some signal pins on the chips have connections to traces on the PCB.
 At a minimum, the VCC and GND pins of each socket must be soldered to the board, as well as the
 pins which have traces on the board. **Make sure you've completed all the soldering before you
 start wire wrapping to a socket!** It's easy to melt the insulation on the wire wrap wires if you have
to come back and solder to the socket after you've already finished your wire wrapping.

14. You will need to wire up the 2.1mm power jack, a master on/off power switch and +5V regulator. If
 you plan to use a heat sink on your regulator, be sure to leave enough space on the board. Pay close
 attention to the polarity of the wall adapter plug. Different plugs have different polarities, and if
 you're not careful and use the wrong polarity, you can destroy your components on your board. You
 will use the diode bridge rectifier on your PCB to protect against damage caused by using a power
 supply with the opposite polarity. Use heavier wire (e.g. 22 AWG) for your main power connections
 or double up your wire wrap connections. Remember, when you solder circuitry such as the 7805
 regulator, be careful about applying too much heat, or you'll end up damaging or destroying the
 circuitry. If you don't use the diode bridge, clearly label the polarity of your power connection so that
 you'll always know what kind of adapter to use.

 Example: + — — — — — —

15. You will also want to mount your RS-232 connector at this time. Solder in the 9 pins of the RS-232
 connector (reference designator J4). You can also solder in an 8-pin or 9-pin header so that you'll be
 able to wire wrap to the RS-232 pins later in the semester. If using an 8-pin header, make sure to
 solder it in to positions 1-8 on the header outline for reference designator J5.

16. The individual T44 wire wrap pins can be used to hold discrete components as necessary.

17. You must choose wire colors to use when implementing your circuits. For this class, red is always
 used for power and black is always used for ground. Your other connections must be colors other than
 red or black. You are free to choose whatever other colors you wish; however, remember that when
 debugging, it is easier when particular wire colors signify a particular type of signal, and when the
 chosen colors contrast with each other and the background to a great degree. For example, it is very
difficult to debug a board when the background is white and when only white wire wrap wire is used
for all connections. One color scheme is shown below:

<table>
<thead>
<tr>
<th>Signal Type</th>
<th>Color</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td>Red</td>
<td>Must be red</td>
</tr>
<tr>
<td>Ground</td>
<td>Black</td>
<td>Must be black</td>
</tr>
<tr>
<td>Multiplexed Address/Data</td>
<td>Gray</td>
<td>Your choice of color</td>
</tr>
<tr>
<td>Buffered Data</td>
<td>Yellow</td>
<td>Your choice of color</td>
</tr>
<tr>
<td>Latched Address</td>
<td>Blue</td>
<td>Your choice of color</td>
</tr>
<tr>
<td>Control Signals</td>
<td>Orange</td>
<td>Your choice of color</td>
</tr>
<tr>
<td>Serial Port Signals</td>
<td>Green</td>
<td>Your choice of color</td>
</tr>
</tbody>
</table>

18. After you have become proficient at basic wire wrapping technique, it is time to start wire wrapping
 your base microcontroller board. The strategy often used is first to lay down the wires which are least
 likely to move or change, so that any wires you have to adjust later are laying on top of the other
 wires. First hook up all your ground connections. Remember what you learned about loop size and
 placement of the decoupling caps—**keep the caps close to the IC power and ground pins and keep**
the leads as short as possible. If you need to solder your decoupling caps into the T44 pins, now is a good time to do this. When wiring, make sure you get good connections so that the sockets are not terribly loose. Leave just a little slack in the wire connections so that you can debug easier later. After you have completed wiring up your ground connections, wire all your +5V connections.

19. Once you have finished wiring up all your ground and +5V connections and **before turning on power**, you need to test to make sure that you do not have any short circuits. Using a multimeter, test between your +5V and ground connections to verify that there is an open circuit between power and ground. If you catch a mistake at this point, there are fewer wires to search through to find the problem. **Use this approach as you are wiring up your board—take small steps, and verify your work often.** This will save time in the long run.

20. **Now, before** putting in any chips, turn on power and verify that you have +5V and ground at the correct pins on your sockets. Measure the voltage with a digital multimeter. Using the oscilloscope, verify that the VCC voltage is close to 5.0V and looks stable at 5.0V, without big oscillations.

21. Wire up your reset circuitry and your oscillator circuitry, and tie the 8051 **EA** line low. **Keep the oscillator circuitry close to the microcontroller and use very short wires. Pull-up your Port 0 pins to Vcc, so that the processor doesn’t go into power-down mode.** You can use a resistor network in a SIP package or discrete resistors. You may not need to pull up all 8 data lines.

22. If you have verified all the basic connections and circuitry, you can now insert your microcontroller (with the power off). Then, turn on power, and use an oscilloscope verify that your ALE line is oscillating at the correct frequency (1/6 the XTAL2 frequency). Use an oscilloscope to view the XTAL2 waveform and check its frequency. If you want, use a logic analyzer to verify that a fetch from address 0000h is occurring immediately after the processor comes out of reset. You should make sure that your oscillator starts reliably every time power is turned on and after a reset. **You may need to adjust the oscillator load capacitance.** Be aware that the oscilloscope probe capacitance can affect your oscillator startup when you probe the XTAL1 and XTAL2 pins.

23. Using the oscilloscope, verify that the VCC voltage is close to 5.0V and that the peak to peak noise between VCC and GND on your C501 is less than ~800mV. If necessary, add more 0.1uF/1.0uF/4.7uF bypass capacitors across the C501 power pins.

24. Wire up the ’373 latch to the microcontroller. Also, wire up the ’08 AND gate to the microcontroller to generate **READ** from **RD** and **PSEN**. Examine the output of the ’08 to verify that it is toggling when **PSEN** toggles. Think carefully about the steps you will need to take to complete your base board, and formulate a plan for incrementally wiring and testing parts of your circuit.
You will need to obtain the signature of your TA or instructor on the following items in order to receive credit for your Lab #1 assignment.

The software portion of Lab #1 must be completed and signed off by **Wednesday, February 1, 2006** in order to give you time to complete the hardware portion upon receipt of your parts kit. Both signoffs are due by **Saturday, February 11, 2006**. You need to submit both of your signoff sheets and lab report by **Wednesday, February 15, 2006**. Labs completed after the due date or submitted after the deadline date will receive grade reductions.

Print your name below, circle your course number, sign the honor code pledge, and then demonstrate your working hardware/firmware in order to obtain the necessary signatures. All items must be completed to get a signature. Separate the signoff sheets from the rest of the lab and turn in the signed forms, a copy of your schematic, a printout of the full listing file (.LST file, printed legibly and complete with comments), and the answers to any applicable lab questions to the instructor in order to receive credit for your work. Make sure your name is on each item and staple the items together, with this signoff sheet as the top item.

Student Name: _________________________________ 4613 or 5613 (circle one)

Honor Code Pledge: "On my honor, as a University of Colorado student, I have neither given nor received unauthorized assistance on this work."

Student Signature: _________________________________

Checklist

- Student demonstrates detailed knowledge of Emily52 (including changing register values, editing data memory, using breakpoints, single stepping, uses /overlap option, etc.)
- Student assembly program works correctly

Student Answers to Lab Questions

1. **How many bytes of code space does your program require?**
 (Don't count the illegal instruction. Show how you arrived at your answer.)

 Code Size? _________________________________

2. **How long did your program take to execute, assuming it completed 10 writes to external memory?** Assume an 11.0592 MHz clock. Don't include the illegal instruction ($A5). Show your detailed calculations on the code listing that you submit with the signoff sheet.

 Execution Time? _________________________________

3. **What would happen if your loop started writing to external memory at location 0008h when running in the simulator?**

4. **What would happen if your loop started writing to external memory at location 0008h if the code was running in actual hardware?**

Instructor/TA Comments:

Instructor/TA signature and date
Print your name below, sign the honor code pledge, and then demonstrate your working hardware in order to obtain the necessary signatures. All items must be completed to get a signature.

Student Name: ________________________________

Checklist

- Schematic of acceptable quality
- Student name on board in permanent ink
- Mounting hardware present (e.g. standoffs or an enclosure)
- Power switch and LED
- Voltage regulator functional, power jack present
- Power-on Reset (RC) and Run-time Reset (pushbutton)
- RS-232 connector mounted
- 74LS373 transparent latch wired
- 74LS08 AND gate generation of READ
- Student displays good knowledge of oscilloscope
- C501 bypass cap is present
- Peak to peak noise measured across C501 VCC and GND is < 800mV
- Oscillator functional (check for correct ALE/XTAL2 signals after power on-off cycles)

Student Answers to Lab Questions

1. **What voltage is present at the regulator input?** Use a digital multimeter. ___________________

2. **What voltage is present at the regulator output?** Use a digital multimeter. __________________

3. **How much power is dissipated in the regulator, assuming a load current of 100mA?** Assume that the regulator is drawing the max quiescent current shown in the data sheet. Show your work.

 Calculated value: ________________________

4. **What peak to peak noise is present across the processor VCC and GND?** Use an oscilloscope.

 Measured value at processor package pins on top side of board: ________________________

 Measured value at wire wrap socket pins on bottom side of board: ________________________

5. **How long is the processor held in reset after the run-time reset pushbutton is released?** Use an oscilloscope and try to measure the time between the release of the pushbutton and the time when noise from ALE is observed on the RST signal.

 Measured value: ________________________

6. **What frequency is present at the ALE pin?** Use an oscilloscope. ________________________

Instructor/TA Comments: ________________________

Instructor/TA signature and date