Maxwell’s equations

The fine print of “Let there be light”

\[
\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \quad \text{Faraday’s law}
\]

\[
\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t} + \vec{J} \quad \text{Ampere’s law}
\]

\[
\nabla \cdot \vec{B} = 0 \quad \text{Gauss’ laws}
\]

\[
\nabla \cdot \vec{D} = \rho
\]

<table>
<thead>
<tr>
<th>\vec{E}</th>
<th>Electric field</th>
<th>[V/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>\vec{H}</td>
<td>Magnetic field</td>
<td>[A/m]</td>
</tr>
<tr>
<td>\vec{D}</td>
<td>Electric flux density</td>
<td>[C/m^2]</td>
</tr>
<tr>
<td>\vec{B}</td>
<td>Magnetic flux density</td>
<td>[Wb/m^2]</td>
</tr>
<tr>
<td>\vec{J}</td>
<td>Electric current density</td>
<td>[A/m^2]</td>
</tr>
<tr>
<td>\rho</td>
<td>Electric charge density</td>
<td>[C/m^3]</td>
</tr>
<tr>
<td>\nabla \times</td>
<td>Curl</td>
<td>[1/m]</td>
</tr>
<tr>
<td>\nabla \cdot</td>
<td>Divergence</td>
<td>[1/m]</td>
</tr>
</tbody>
</table>
Constitutive relations
Interaction with matter

\[\vec{D} = \varepsilon_0 \int_{-\infty}^{t} \varepsilon(t-\tau) \cdot \vec{\varepsilon}(\tau) \, d\tau \]

Dispersive & anisotropic

\[\frac{\varepsilon \neq f(t)}{\varepsilon = f(t)} \rightarrow \varepsilon_0 \varepsilon \cdot \vec{\varepsilon}(\tau) \]

Anisotropic

\[\varepsilon = \mu \rightarrow \varepsilon_0 \varepsilon \cdot \vec{\varepsilon}(\tau) \]

Isotropic

\[\vec{B} = \mu_0 \int_{-\infty}^{t} \mu(t-\tau) \cdot \vec{H}(\tau) \, d\tau \rightarrow \mu_0 \vec{H} \]

Nonmagnetic

\[\vec{J} = \sigma \cdot \vec{E} \]

Ohm's Law

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>\varepsilon_0</td>
<td>Permittivity of free space</td>
<td>8.854... \times 10^{-12}</td>
<td>[F/m]</td>
</tr>
<tr>
<td>\varepsilon</td>
<td>Dielectric constant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\mu_0</td>
<td>Permeability of free space</td>
<td>4 \pi 10^{-7}</td>
<td>[H/m]</td>
</tr>
<tr>
<td>\mu</td>
<td>Relative permeability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sigma</td>
<td>Conductivity</td>
<td></td>
<td>[\Omega/m]</td>
</tr>
</tbody>
</table>
Boundary conditions
Fields at sharp change of material

These are derived from Maxwell’s equations.

In the absence of surface charge or current...

\[
\begin{align*}
\mathcal{E}_t^1 &= \mathcal{E}_t^2 & \text{Conservation of transverse electric and magnetic fields} \\
\mathcal{H}_t^1 &= \mathcal{H}_t^2 \\
\mathcal{D}_n^1 &= \mathcal{D}_n^2 & \text{Conservation of normal electric and magnetic flux densities} \\
\mathcal{B}_n^1 &= \mathcal{B}_n^2
\end{align*}
\]

Unit vector normal to boundary
\hat{n}

Unit vector transverse (or tangential) to boundary
\hat{t}
Monochromatic fields

Important simplification

\[f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} f(\omega) e^{j\omega t} \, d\omega \]

Fourier Transform

\[\mathcal{E} = \text{Re}(E e^{j\omega t}) \]

Monochromatic fields \(E \) transform like time-domain fields \(\mathcal{E} \) for linear operators

\[\frac{d}{dt} \rightarrow j\omega \]

Removes all time-derivates.

\[\nabla \times \vec{E} = -j\omega \vec{B} \]

\[\nabla \times \vec{H} = +j\omega \vec{D} + \vec{J} \]

Monochromatic Maxwell’s equations.

\[\nabla \cdot \vec{B} = 0 \]

\[\nabla \cdot \vec{D} = \rho \]
Monochromatic constitutive relations

The reason for using the monochromatic assumption

Convolution

\[
\vec{D} = \mathcal{E}_0 \int_{-\infty}^{t} \mathcal{E}(t-\tau) \cdot \vec{\mathcal{E}}(\tau) \, d\tau \quad \Rightarrow \quad \vec{D} = \mathcal{E}_0 \mathcal{E}(\omega) \cdot \vec{E}
\]

Multiplication

\[
\vec{B} = \mu_0 \int_{-\infty}^{t} \mu(t-\tau) \cdot \vec{\mathcal{H}}(\tau) \, d\tau \quad \Rightarrow \quad \vec{B} = \mu_0 \mu(\omega) \cdot \vec{H}
\]

\[
\mathcal{E}(\omega) = \int_{0}^{\infty} \mathcal{E}(t) e^{-j\omega t} \, dt
\]

Inverse Fourier Transform

Note that \(\mathcal{E}\) is now \(f(\omega)\) & not \(f(t)\).

If \(\mathcal{E}\) is not constant in \(\omega\), it causes “dispersion” of pulses.

Conditions for lossless materials derived from Poynting vector (next)

\[
\mathcal{E}^+ = \mathcal{E}
\]

\[
\mu^+ = \mu
\]

\(\mathcal{E}^+\) is the Hermitian conjugate:

\[
\mathcal{E}_{ji} \rightarrow \mathcal{E}_{ij}^*
\]
Complex dielectric tensor
For conductive materials

\[\nabla \times \vec{H} = + j \omega \vec{D} + \vec{J} \]

Ampere’s law

\[= j \omega \varepsilon_0 \varepsilon \cdot \vec{E} + \sigma \cdot \vec{E} \]

Constitutive relations

\[= j \omega \varepsilon_0 \left(\varepsilon - \frac{j}{\omega \varepsilon_0} \sigma \right) \cdot \vec{E} \]

Group terms

Complex dielectric tensor

From this point on the dielectric tensor will be taken to be complex via this definition.
Poynting vector

Power flow

\[\vec{P} = \vec{E} \times \vec{H} \]

- **Instantaneous power flow**

\[\langle \vec{P} \rangle = \frac{1}{T} \int_0^T \vec{P} \, dt \]

- **Time-averaged power flow**

\[= \frac{1}{2} \text{Re}(\vec{E} \times \vec{H}) \]

\[= \text{Re}(\vec{P}) \]

- **Define complex vector**

\[\vec{P} = \frac{1}{2} \vec{E} \times \vec{H} \]

- **Real part of P is \(\langle \vec{P} \rangle \)**

| \(\mathcal{P} \) | Power per unit area | [W/m²] |
Wave equation

Eliminate all fields but E

\[
\nabla \times \nabla \times \vec{E} = -j \omega \nabla \times \vec{B} \quad \text{Take curl of Faraday's law}
\]
\[
= -j \omega \mu_0 \nabla \times \vec{H} \quad \text{Magnetic constitutive}
\]
\[
= \omega^2 \mu_0 \vec{D} \quad \text{Ampere’s law}
\]
\[
= \omega^2 \varepsilon_0 \mu_0 \varepsilon \cdot \vec{E} \quad \text{Electric constitutive}
\]

\[
\nabla \times \nabla \times \vec{E} - k_0^2 \varepsilon \cdot \vec{E} = 0 \quad \text{Monochromatic WE}
\]

\[
\nabla^2 \vec{E} + k^2 \vec{E} = 0 \quad \text{Scalar simplification}
\]

<table>
<thead>
<tr>
<th>k_0</th>
<th>Wave number of free space</th>
<th>$\omega/c = 2\pi/\lambda_0$ [1/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>Speed of light in vacuum</td>
<td>$1/\sqrt{\mu_0\varepsilon_0}$ [m/s]</td>
</tr>
</tbody>
</table>
Plane-wave solution

Cartesian eigensolution in ∞ homogeneous space.

Assume a plane-wave solution. Note that this is an eigenfunction.

$$\vec{\varepsilon} = \text{Re} \left(\vec{E}_0 \ e^{j(\alpha x - \vec{k} \cdot \vec{r})} \right)$$

or

$$\vec{E} = \vec{E}_0 \ e^{-j \vec{k} \cdot \vec{r}}$$

Similar to monochromatic assumption, removes all space derivatives.

This transforms the wave equation into three coupled linear equations (one for each vector component of E) in three variables (the three components of k). To have a non-trivial solution, the determinant of this matrix equation must be zero.

$$\left| \left(\vec{k} \times \vec{I} \right)^2 + k_0^2 \vec{\varepsilon} \right| = 0$$

Characteristic equation.

By using Gauss’ Law, we can reduce this from 6th order in $n = k/k_0$ to 4th in n (actually second order in n^2).

$$\vec{k} \cdot \vec{\varepsilon} \cdot \vec{k} \left(\frac{k}{k_0} \right)^4 + \vec{k} \cdot \left[\text{adj} \vec{\varepsilon} - \left(\text{Tr} \text{adj} \vec{\varepsilon} \right) \vec{I} \right] \cdot \vec{k} \left(\frac{k}{k_0} \right)^2 + |\vec{\varepsilon}| = 0$$

<table>
<thead>
<tr>
<th>n</th>
<th>Index of refraction</th>
<th>k/k_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>adj A</td>
<td>Adjoint of matrix</td>
<td>$</td>
</tr>
<tr>
<td>Tr A</td>
<td>Trace of matrix</td>
<td>ΣA_{ii}</td>
</tr>
</tbody>
</table>
Special cases

Isotropic and uniaxial

\[\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & & \\ & \varepsilon_{11} & \\ & & \varepsilon_{11} \end{bmatrix} \]

Isotropic material

\[\left(\frac{k}{k_0} \right)^4 - 2\varepsilon_{11} \left(\frac{k}{k_0} \right)^2 + \varepsilon_{11}^2 = 0 \]

Characteristic equation

\[n = \left\{ \pm \sqrt{\varepsilon_{11}}, \pm \sqrt{\varepsilon_{11}} \right\} \]

Four solutions, 2+, 2-

\[\mathbf{\varepsilon} = \begin{bmatrix} \varepsilon_{11} & & \\ & \varepsilon_{11} & \\ & & \varepsilon_{33} \end{bmatrix} \]

Uniaxial material in principal coords.

\[\hat{k} = \cos \theta \sin \varphi \hat{x} + \sin \theta \sin \varphi \hat{y} + \cos \varphi \hat{z} \]

Propagation direction

\[\left(\frac{k}{k_0} \right)^4 - \varepsilon_{11} \left(\frac{k}{k_0} \right)^2 + \frac{\varepsilon_{11}^2 \varepsilon_{33}}{\varepsilon_{11} \sin^2 \varphi + \varepsilon_{33} \cos^2 \varphi} = 0 \]

Characteristic equation

\[n = \left\{ \pm \sqrt{\varepsilon_{11}}, \pm \left(\frac{\cos^2 \varphi}{\varepsilon_{11}} + \frac{\sin^2 \varphi}{\varepsilon_{33}} \right)^{-1/2} \right\} \]

Four solutions,
2 ordinary
2 extraordinary

“Index ellipsoid”
• Physical nature of light
 – Plane waves

Uniaxial surface w/ pols
Biaxial surface w/ polys

- Physical nature of light
 - Plane waves
Cartesian eigensolution at ∞ half-space

Foundation of Fourier optics

Break transmitted wave vector into normal and transverse components.

$$\vec{k}_{\text{transmit}} = k_n \hat{n} + k_t \hat{t}$$

Excitation on boundary.

$$\vec{\tilde{E}}_t = E_t \hat{e} e^{j(\omega \vec{r} - \vec{k}_t \cdot \vec{r})}$$

Transverse wave vector conserved.

$$k_t = \vec{k}_{\text{inc}} \cdot \hat{t} = k_{\text{inc}} \sin \theta_{\text{inc}} = \vec{k}_{\text{trans}} \cdot \hat{t} = k_{\text{trans}} \sin \theta_{\text{trans}}$$

Problem: Given orientation of boundary (\hat{n}, \hat{t}), material (ε), and boundary excitation ($\vec{\tilde{E}}_t$), how does plane wave propagate into material (k_n)?
Booker quartic

Characteristic equation for Fourier optics

\[\vec{k}_{\text{transmit}} = k_n \hat{n} + k_t \hat{t} \]

Plug into characteristic equation.

…and solve for \(k_n \), yielding new characteristic equation.

Note that this is now a general 4th order equation

\[a_4 \left(\frac{k_n}{k_0} \right)^4 + a_3 \left(\frac{k_n}{k_0} \right)^3 + a_2 \left(\frac{k_n}{k_0} \right)^2 + a_1 \left(\frac{k_n}{k_0} \right) + a_0 = 0 \]

The coefficients are given in terms of the known variables:

\[a_4 = \hat{n} \cdot \vec{\varepsilon} \cdot \hat{n} \]

\[a_3 = \hat{n}_t \cdot \left(\begin{array}{c} \varepsilon \\ \varepsilon = T \\ \varepsilon + \varepsilon \end{array} \right) \cdot \hat{n} \]

\[a_2 = \hat{n} \cdot \left[\text{adj } \varepsilon - \left(\text{Tr adj } \varepsilon \right) I \right] \cdot \hat{n} + \hat{n}_t \cdot \varepsilon \cdot \hat{n}_t + n_t^2 a_4 \]

\[a_1 = \hat{n}_t \cdot \left[\text{adj } \varepsilon + \text{adj } \left(\begin{array}{c} \varepsilon \\ \varepsilon = T \end{array} \right) \right] \cdot \hat{n} + n_t^2 a_3 \]

\[a_0 = \hat{n}_t \cdot \left[\text{adj } \varepsilon - \left(\text{Tr adj } \varepsilon \right) I \right] \cdot \hat{n}_t + n_t^2 \hat{n}_t \cdot \varepsilon \cdot \hat{n}_t + || \varepsilon || \]
Isotropic refraction

a.k.a. Snell’s law – gives ray directions at boundary

\[\hat{n} \]

Real space

\[\frac{\varepsilon}{\varepsilon_0} = \frac{\hat{k}_n}{\hat{k}_t} \]

\[\theta_{inc} \]

\[\theta_{trans} \]

\[\theta_{refl} \]

\[n_{trans} = \sqrt{\varepsilon - n_t^2} \]

\[= n_{inc} \sin \theta_{inc} \]

\[= n_{trans} \sin \theta_{trans} \]

\[= n_{refl} \sin \theta_{refl} \]

Fourier space

Real part

Imag. part
Total internal reflection

a.k.a. evanescent waves

Real space

\[\beta = \frac{\epsilon}{\epsilon_0} \]

\[n\hat{t} \]

\[\theta_{inc} \]

\[\theta_{refl} \]

\[k_{inc} \]

\[k_{refl} \]

\[\alpha_n \]

\[E_{trans} = E_0 e^{k_0(-j n\hat{t} - \alpha_n \hat{n}) \cdot \vec{r}} \]

Momentum space

\[\alpha_n \]

\[n_{inc} \]

\[n_{refl} \]

\[\theta_{inc} \]

\[\theta_{refl} \]

\[n_t \]

\[n_{inc} \sin \theta_{inc} = n_{refl} \sin \theta_{refl} \]
Extraordinary refraction
and other fun with crystals

Real space

Momentum space

Physical nature of light
– Plane waves

Saleh & Teich 6.3
Materials with loss
e.g. polarizers

\[
\varepsilon = \begin{bmatrix}
1.5^2 & 1.5^2 \\
1.5^2 & 1.8^2 - j2
\end{bmatrix}
\]

Uniaxial crystal with loss only in \(z \). Lossless part same as previous example.

- Physical nature of light
 - Plane waves

- Ordinary ray polarization \(\perp \) to \(z \), so not changed.
- Extraordinary ray polarization \(\perp \) to \(z \) at \(c \), so unchanged there.
- \(z \) component of extraordinary ray increases away from \(c \), as does loss.
Fresnel Coefficients

Amplitude and phase of waves at boundary

\[
\begin{align*}
\text{s ("senkrecht") / TE / \perp} & \\
\frac{r_\perp}{E_i} & = \frac{n_1 \cos \theta - n_2 \cos \theta'}{n_1 \cos \theta + n_2 \cos \theta'} = -\frac{\sin(\theta - \theta')}{\sin(\theta + \theta')} \\
\frac{t_\perp}{E_i} & = \frac{2n_1 \cos \theta}{n_1 \cos \theta + n_2 \cos \theta'} = \frac{2\sin \theta' \cos \theta}{\sin(\theta + \theta')} \\
\text{p ("parallel") / TM / \parallel} & \\
\frac{r_\parallel}{E_i} & = \frac{n_2 \cos \theta - n_1 \cos \theta'}{n_2 \cos \theta + n_1 \cos \theta'} = \frac{\tan(\theta - \theta')}{\tan(\theta + \theta')} \\
\frac{t_\parallel}{E_i} & = \frac{2n_1 \cos \theta}{n_2 \cos \theta + n_1 \cos \theta'} = \frac{2\sin \theta' \cos \theta}{\sin(\theta + \theta') \cos(\theta - \theta')}
\end{align*}
\]
Fresnel Coefficients

Special values

\[R = |r|^2 = \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 = \left(\frac{\Delta n}{2n} \right)^2 \]

Normal incidence

\[\theta_B = \tan^{-1}\left(\frac{n_2}{n_1} \right) \]

Brewster’s angle

\[\theta + \theta' = \frac{\pi}{2} \]

Physical interpretation of \(\theta_B \):
Dipoles excited in \(n_2 \) can not radiate in direction of reflected wave when it is \(\perp \)
Fresnel Coefficients

Phase and TIR

\[n_1 > n_2 \]

TIR

\[\theta_C = \sin^{-1}\left(\frac{n_2}{n_1}\right) \]

\[\Delta \phi = \begin{cases} \pi & \text{for } n_2 > n_1 \\ 0 & \text{for } n_2 < n_1 \end{cases} \]

Phase of TE electric field on reflection.

TM has the opposite (same) sign < (>) \(\theta_B \).

“Goos-Hanchen” phase-shift
Propagation and diffraction
Regions and their naming

\[z = \frac{L^2}{\lambda} \]

- Near field
- Fresnel
- Fraunhofer or far field

\(L = 20 \, \mu m \)
\(\lambda = 1 \, \mu m \)
Fourier optics in 1 equation
Valid in all regions

\[E(t, x, y, z) = \mathcal{F}_{t,xy}^{-1} \left\{ \mathcal{F}_{t,xy} \left[E(t, x, y, 0) e^{-jk_z(\omega, k_T)z} \right] \right\} \]

Where \(k_z(\omega, k_T) \) is given by the Booker quartic.

The Fourier transform (in case you’ve forgotten) is

\[
\mathcal{F}_{t,xy} \equiv \int dt \int dx \, dy \ e^{-j(\omega t - (k_x x + k_y y))}
\]

\[
\mathcal{F}_{t,xy}^{-1} \equiv \int d\omega \int dk_x \, dk_y \ e^{j(\omega t - (k_x x + k_y y))}
\]
First imaging limitation
Band-limiting propagation in free space

Spatial frequencies beyond TIR do not propagate. Thus only a few wavelengths after the object, the radiated field will be band-limited. For example, a 1D rect function:

\[
\mathcal{F}\left\{ \text{rect}\left(\frac{x}{L} \right) \right\} = 2 \text{sinc}\left(\frac{1}{2} k_x L \right) = 2 \text{sinc}(\pi f_x L) = 2 \text{sinc}\left(\pi \frac{L}{\lambda_x} \right)
\]

The highest spatial frequency that can be transmitted is thus

\[f_x = \frac{1}{\lambda} \text{ or } k_x = \frac{2\pi}{\lambda} \]
Near-field region
~no diffraction

How far will the light from a rectangular aperture propagate before it begins to diffract? Calculate the phase accumulated between DC and first null and assume when this reaches π then the beam will look significantly different:

$$\Delta k_z z = k_z (k_x = 0) z - k_z (k_x = \frac{2\pi}{L}) z$$

Phase accumulated vs. z

$$= k z - z \sqrt{k^2 - \left(\frac{2\pi}{L}\right)^2}$$

Isotropic k_z

$$\approx k z - z \left(k + \frac{1}{2k} \left(\frac{2\pi}{L}\right)^2\right)$$

Binomial expansion

$$= \lambda \frac{\pi}{L^2} z$$

At null spatial frequencies now π out of phase

$$\equiv \pi$$

Rayleigh range aka near-field/far-field boundary

$$\therefore z = \frac{L^2}{\lambda}$$

Thus a band-limited image can be transmitted directly through free space for a distance $< L^2 / \lambda$
Beyond the near-field

Optical Field

\[F\{\text{Rect}(x/L)\} = 2 \text{ Sinc}(k_x L/2) \]

\[k_x = k_0 \sin(\theta) \]

First null is at

\[\sin(\theta) = \lambda/L = 1/50 = 0.125/5.8 \]

E at end of propagation

- Physical nature of light
 - Propagation and diffraction
Diffraction from a 1D lens

Optical Field

\[\mathfrak{F}\{\text{Rect}(x/L)\} = L \text{ Sinc}(k_xL/2) \]

\[k_x = k_0 \sin(\theta) \]

First null is at \(x = f \lambda/L = 5800 \times 1/200 = 29 \)
Airy disk

The diffraction limited resolution

Q: What is the electric field at the focus of a uniform amplitude cone?

Real space

\[E(r) = 2 J_1 \left(\frac{2 \pi}{\lambda} r \sin \theta_0 \right) \left/ \frac{2 \pi}{\lambda} r \sin \theta_0 \right. \]

Fourier space

\[E(k_r) = \text{circ} \left[k_r \left/ \left(\frac{2 \pi}{\lambda} \sin \theta_0 \right) \right. \right] \]

Diameter of first null:

\[r \left/ \frac{2 \pi}{\lambda} \sin \theta_0 = 3.83171... \right. \]

\[D = 2r \approx 1.22 \frac{\lambda}{\sin \theta_0} \]

\[\theta_0 \]

\[\theta_0 \]

\[E(0) = 2 J_1 \left(\frac{2 \pi}{\lambda} \right) \left/ \frac{2 \pi}{\lambda} \right. \]

Peak E Energy in ring

<table>
<thead>
<tr>
<th>(J_1(r) = 0)</th>
<th>Peak E</th>
<th>Energy in ring</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.83171...</td>
<td>+1.0</td>
<td>83.9%</td>
</tr>
<tr>
<td>7.01559...</td>
<td>-0.017</td>
<td>7.1%</td>
</tr>
<tr>
<td>10.1735...</td>
<td>+0.0041</td>
<td>2.8%</td>
</tr>
<tr>
<td>13.3237...</td>
<td>-0.0016</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
Fresnel integral
Convolution with impulse response

The transfer function of free space is

\[H(\omega, k_x, k_y; z) \equiv \frac{E(\omega, k_x, k_y, z)}{E(\omega, k_x, k_y, 0)} = e^{-jz\sqrt{\left(\frac{\omega}{c}\right)^2 - k_x^2 - k_y^2}} \]

The paraxial approximation to this is found by expanding the square root in a binomial series. Note that this is the solution to the paraxial wave equation (Helmholtz equation):

\[H(\omega, k_x, k_y; z) \approx e^{\frac{jk_0 k_x^2 + k_y^2}{2k_0} - jk_0 z} \]

The transverse spatial inverse Fourier transform of this is the paraxial monochromatic impulse response of free space

\[h(\omega, x, y; z) = \mathcal{F}^{-1}_{k_x, k_y} \{ H(\omega, k_x, k_y; z) \} = \frac{jk_0}{2\pi z} e^{-jk_0 \frac{x^2 + y^2}{2z}} \]

Yielding the Fresnel diffraction formula

\[E(\omega, x, y, z) = \frac{jk_0}{2\pi z} e^{-jk_0 z} \int \int E(\omega, \xi, \psi, 0) e^{-jk_0 \frac{(x-\xi)^2 + (y-\psi)^2}{2z} - jk_0 z} \, d\xi \, d\psi \]