SCHEDULE

1. Introduction (Aug. 24)

2. Two dimensional signals and systems (Aug. 26, 31, Sep. 2, 7)
 ◦ Fourier analysis
 ◦ Linear systems
 ◦ Two-dimensional sampling

3. Wave Optics (Sep. 9, 14, 16, 21)
 ◦ Wave equation, Helmholtz equation, Angular spectrum of plane waves
 ◦ Diffraction
 ◦ Paraxial approximation: Fresnel and Fraunhofer diffraction, Huygens principle

4. Analysis of coherent optical systems (Sep. 23, 28, Oct. 5)
 ◦ Thin optical elements: slab, prism, lenses, gratings
 ◦ Fourier transforming properties of lenses
 ◦ Image formation
 ◦ Operator notation

5. Analog optical information processing (Oct. 7, 19, 21)
 ◦ Spatial filtering
 ◦ Correlators, pattern recognition
 ◦ Matrix-vector multiplier

No class on October 12.

6. Partial coherence (Oct. 26, 28, Nov. 2, 4)
 ◦ Temporal and spatial coherence
 ◦ Mutual coherence function, mutual intensity
 ◦ Optical systems with partially coherent light

7. Spatial frequency analysis of optical imaging systems (Nov. 9, 11, 16)
 ◦ Coherent systems: amplitude transfer function
 ◦ Incoherent systems: optical transfer function, modulation transfer function
 ◦ Aberrations
 ◦ Resolution, coherent and incoherent cases

8. Wavefront modulation devices (Nov. 18, 23)
 ◦ Photographic film
 ◦ Spatial light modulators: liquid crystals, acousto-optic, MEMS devices

9. Holography (Nov.30, Dec. 2, 7, 9)
 ◦ Gabor and Leith Upatnieks holograms
 ◦ Image location and magnification
 ◦ Classification of holograms
 ◦ Thick holograms
 ◦ Computer generated holograms
 ◦ Applications