DC Motor Armature:

\[+ V_a - \]

\[\text{Torque } T = L I_a \]

\[\text{Back EMF } = k \omega = E \]

\[\omega = \text{shaft speed} \]

In steady state, \(E \propto V_a \)

so speed \(\propto V_a \)

what we want to do:

Drive wheels in either direction

\(\Rightarrow \) need to produce both positive and negative \(V_a \)

From Exp. 2: we obtained max speed at 10V

so let's choose \(-10V \leq V_a \leq +10V\)

Also from Exp. 2: we employed armature currents up to 1A

(and we limited \(I_a \) to 1A under blocked rotor conditions) so let's specify \(-1A \leq I_a \leq +1A\)

We need to design a power amplifier circuit that can do this. Where we are going:

[Diagram showing control flow from microcontroller to power amplifier]
Could we build the power amplifier with an op amp? For ex.,

![Circuit Diagram]

\(V_{cc} = 10V \)

Problems

1. We have a +10V supply but no -10V supply.

 So the op amp can produce only positive voltage.

 A motor can only turn in one direction. How do we get negative voltage?

Solution: A push-pull circuit. Connect the armature differentially between the outputs of two power amplifiers (PA's):

\[V_a = V_1 - V_2 \]

Even though \(V_1 \) and \(V_2 \) are positive: \(V_{cc} > V_1, V_2 > 0 \) \(V_a \) can be negative: \(V_{cc} > V_a > -V_{cc} \)
There are multiple ways to control the Pts's:

a) \(V_1 = \frac{1}{2} V_{cc} + V \) with \(-\frac{1}{2} V_{cc} \leq V \leq \frac{1}{2} V_{cc}\)

\(V_2 = \frac{1}{2} V_{cc} - V \)

then \(V_a = V_1 - V_2 \geq 2 V \) and \(-V_{cc} \leq V_a \leq +V_{cc}\)

b) To get positive \(V_a \), let \(V_2 = 0 \) and control \(V_a \) using \(V_1 \): \(V_a = V_1 \)

To get negative \(V_a \), let \(V_1 = 0 \) and control \(V_a \) using \(V_2 \): \(V_a = -V_2 \)

We will use (b) in this experiment.

Problem #2:
The power amplifiers need to produce up to 1 A, can the op amp do it? Check TLV272 data sheet (see Exp. 3 Web site). See output current \(I_o \) characteristics, p. 6. With \(V_{pp} = 10 V \),
the op amp produces no more than 13 mA. Also graphs on p. 9; under some conditions it could produce more current, but nowhere near 1 A.

This is typical of commercial op amps. So we need a current boost.

Solution: use a power transistor to increase the current.
The NPN Bipolar Junction Transistor (BJT)

Base - Emitter junction is a diode that controls the device: put current through this diode to operate the transistor.

A simple circuit:

Basic active region equivalent circuit:

Current gain $\beta = \frac{I_C}{I_B}$

Also called h_{FE}

Typical $\beta \approx 20$ to 200
Insert equivalent circuit model:

\[V_{CE} = V_{CC} - I_c R_c = V_{CC} - \beta I_B R_c \]

Solve circuit (valid for operation in active region):

\[V_{BE} = \text{diode drop} \approx 0.7 \text{ V} \]

\[V_{CE} = V_{CC} - I_c R_c \]

The PNP BJT - opposite polarity

Polanities are reversed; negative \(I_B \) forward-biases B-E diode junction, Negative \(V_{CE} \) and \(I_c \) in active region.
Emitter follower circuit

\[I_c = \beta I_B \]

\[I_a = I_B + I_c = (1+\beta)I_B \]

If our op amp can produce 10 mA and \(\beta = 100 \) then we can get \(I_a = (101)(10 \text{ mA}) = 1.01 \text{ A} \)

To get positive and negative \(I_a \):

For positive \(I_a \): \(V_{BE} = +0.7 \text{ V} \) so NPN conducts

\[I_a = \beta_{\text{NPN}} I_B > 0 \]

For negative \(I_a \): \(V_{BE} = -0.7 \text{ V} \) and NPN is cutoff

\[I_a = \beta_{\text{PNP}} I_B < 0 \]

PNP conducts
The complete power amplifier circuit:

```
Vcc

Q1 NPN + Va -
Q2 NPN

Q3 PNP

Rb1

Rb2

Ia

Ib1

Ib2

Vce

Vbe2

Vbe1
```

Limiting the current to |Ia| ≤ 1A.

The data sheet for the KSCU73 NPN (see Exp. 3 web page) says that β ≤ 200. Let's choose Rb1 and Rb2 to limit Ia to 1A under worst case conditions.

Worst case
- Rotor is blocked so water armature becomes resistance Ra
- U1 produces max output voltage (nVcc)
- U2 produces min output voltage 0

Under these conditions:
- Fe > 0
- Ib1 > 0 so VBE1 = +0.7 V
 - Q1 operates in active region
- Ib2 < 0 so EbVBE2 = -0.7 V
 - Q2 is cut off
 - Q4 operates in active region
Insert equivalent circuits:

\[V_{cc} \]

\[R_{b1} \]

\[I_{b1} \]

\[(Q_3 \text{ cutoff}) \]

\[\beta_{npp} I_{b1} \]

\[+ V_a \]

\[(Q_2 \text{ cutoff}) \]

\[I_a \]

\[R_a \]

\[R_{b2} \]

\[R_{b2} \]

\[\beta_{pnp} I_{b2} \]

\[(-I_{b2}) \]

\[Q_4 \]

Solve circuit for \(I_a \)

Choose \(R_{b1} = R_{b2} \) such that \(I_a = 1 \text{ A} \)

With \(\beta_{npp} = \beta_{pnp} = 200 \)