Figure 1: DC motor equivalent circuit. T_{load} is a combination of the internal torque T_{in} (due to gear box) and the torque T_{ext} applied to wheel externally

1) Write the equation relating angular wheel frequency ω and the encoder frequency f_{enc}. That is, find the constant K_{enc} such that $\omega = K_{enc} \cdot f_{enc}$. You will need to review lecture slides in order to answer this question.

2) Assume that V_{DC} and I_{DC} are constant DC values and the wheel is rotating at constant angular frequency ω. Find an expression for motor parameter k as a function of V_{DC}, I_{DC}, R_{M} and f_{enc}. You may first solve in terms of ω, and then use question 1 equation to put the answer in terms of f_{enc}.

3) Assume again that V_{DC} and I_{DC} are constant DC values. When a motor wheel is locked in place, the angular frequency of the motor is forced to zero, $\omega = 0$. Under these assumptions, redraw the equivalent circuit in Figure 1 and simplify as much as possible. Given $V_{DC} = 1$ V, a DC current of $I_{DC} = 0.5$ A is measured. Calculate motor winding resistance R_{M}.