ECEN 2420, Electronics for Wireless, Prof. Zoya Popovic

PRACTICE PROBLEMS FOR MIDTERM EXAM
No calculators, closed everything. You are allowed to bring a formula sheet with 15 equations, and you need to turn in your formula sheet with the exam.

Part I: Questions

Q1. Sketch the block diagram of the radio (1) transmitter and (2) receiver you are building and label all frequencies and power levels.

Q2. What is 2V, 10mW, 1kW, 0.1mV and a gain of 20 in dB? Do this without using a calculator.

Q3. What is -13dBm, 6dBV, -100dBm, 30dBm, 33dBm, 43dBW in volts or watts? No calculator needed.

Q4. Write down expressions for average dissipated power if the following are given:
 (a) Peak (max) voltage and current
 (b) Peak (max) voltage and load
 (c) Peak-to-peak voltage and current
 (d) RMS voltage and load
 (e) RMS current and load

Q5. Name the radio bands and give the frequency range for each.

Q6. What is modulation? Name at least 3 types of modulations and sketch the signal in time domain in each case.

Q7. A mixer has input frequencies of 21MHz and 22MHz. What frequencies exist at the output of the mixer?

Q8. A mixer has input frequencies of 12MHz and 0.003MHz. What frequencies exist at the output of the mixer, and what function do you think this mixer is performing?

Q9. What is the difference between a direct conversion receiver and a superheterodyne receiver? Which type is the radio you are building in the lab?

Q10. What are the Thevenin and Norton equivalent circuits for the circuits below?
Q11. What is the time constant of a resistor in series with a capacitor? If the input is a voltage V_0, sketch the voltage across the capacitor as a function of frequency and find the cutoff frequency.

Q12. What is the time constant of a resistor in parallel with an inductor? If the input is a current source I_0 turned on at $t = 0$ and there is no initial current through the inductors, sketch the currents through the resistor and through the inductor as a function of time. How long will it take for the current through the resistor to drop to half of its initial value?

Q13. For a series R-L circuit fed by a voltage $V = V_{max} \cos \omega t$, give expressions for (a) the complex power; (b) the reactive power; (c) average power.

Q14. For a parallel R-C circuit fed by a voltage $V = V_{max} \cos \omega t$, give expressions for (a) the complex power; (b) the reactive power; (c) average power.

Q15. Sketch the IV curve for a diode with a built-in voltage of 0.6V and a reverse breakdown voltage of 30V. Label all relevant regions and write down the equation $I(V)$.

Q16. What are different types of diodes, and what are they used for? Include sketches of relevant circuits and waveforms.

Q17. Find the equivalent Thevenin and Norton circuits of a source (battery) if you measure the open circuit voltage to be 12 V and that for 20mA of current draw the voltage drops to 10V.

Q18. A diode detector circuit is shown below. It is used to detect a 10-MHz carrier modulated with a 1-kHz signal.
 - What is the function of the resistor R?
 - How are R and C chosen? Give example values that you think would work.

Q19. If the power at some frequency f is 3dB below the maximum power P_0 at f_0, how is the voltage at f related to the voltage V_0 at f_0?

Q20. For a T37-2 core with $A_L=4.0\text{nH/turn}^2$, what is the inductance for 30 turns of #28 wire wound around the core?

Q21. Write down the expressions that relate voltage and current for a resistor, capacitor and inductor. What do these expressions become when the voltage and current are time harmonic? From your $V(I)$ and/or $I(V)$ expressions, define the impedance of each component.
Q22. For a series RC circuit connected to a sinusoidal voltage source, derive and sketch the amplitude of the voltage across the (1) resistor and (2) capacitor as a function of frequency. Label the cutoff frequencies.

Q23. Derive and sketch the amplitude of the voltage across the resistor as a function of frequency for a (1) series RLC circuit and (2) parallel RLC circuit. Label all relevant frequencies and amplitudes with their values.

Q24. What is the definition of the quality factor? Write down the expression for the quality factor of a series RLC circuit and a parallel RLC circuit. Explain why the expressions depend on R the way they do.

Q25. Sketch a 5-th order (1) low-pass, (2) high pass and (3) bandpass filter circuit. Sketch a Butterworth and Chebyshev frequency filter characteristics for a 5-th order filter.

Q26. The IF filter in the radio receiver is a crystal filter.
- What type of filter is this?
- What is the equivalent circuit for a piezoelectric crystal? What are the circuit elements physically?
- What is the Q factor approximately for each filter element?
- Could you make this filter with L and C components?

Q27. Sketch the circuit for an ideal transformer, label all currents and voltages. For \(N_p = 5 \) turns on the primary and \(N_s = 15 \) turns on the secondary, find:
- The secondary current if the input current is 1A;
- The primary voltage if you measured 12V on the secondary;
- The impedance seen at the primary for a 300-ohm load connected on the secondary.

Q28. What is the magnetizing current in a transformer? Sketch an equivalent circuit of a transformer which includes the effect of the magnetizing current and explain how you would measure or calculate it.

Q29. Sketch a common emitter amplifier with emitter degeneration, and using a npn bipolar transistor. Label all the elements. Sketch the ac equivalent circuit and explain the important elements.
- What is the current gain equal to?
- What is the voltage gain equal to?
- What happens when the base is not dc biased (Vbb=0) and there is a large sinusoidal voltage applied to the base?

Q30. What is the maximum efficiency of a class-A amplifier? Give the definition of efficiency and show how you got your answer.
Part II: Problems

P1. When measuring a 9-V battery, the open circuit voltage is found to be 10V. For 200mA of current, the voltage is 8V.
(a) Find the Thevenin equivalent circuit for the battery and sketch the V-I dependence, making sure you label the relevant values and include units.
(b) Assume that the NorCal 40A radio draws 20mA when it is receiving. What voltage would you expect from the battery?
(c) If the battery has an amp-hour rating of 0.04A-hr, how long would you be able to operate the radio in receive mode?

P2. You are given a circuit which is a parallel connection of a 1-kΩ resistor and a 100pF capacitor. Find the elements of an equivalent series circuit at 7MHz. What are the Q-factors of the two circuits (Q_s and Q_p) equal to and how are they related?

P3. The transmit filter of your radio is centered at 7MHz and shown in the figure below. Find the expression for the admittance of this filter. For what value of the tunable capacitor C is the resonance at 7MHz? What is the value of R which results in the 3-dB filter bandwidth of 200 kHz?

P4. For a T37-2 core with $A_L=4.0\text{nH/turn}^2$, what is the inductance of 8 turns wound around the core? Wind transformer, find magnetizing inductance, find C to resonate at some frequency

P5. The receive filter of your radio is centered at 7MHz and shown in the figure below, where R is the parasitic resistance of the 10-µH inductor coil. Find the expression for the impedance of this filter. For what value of the tunable capacitor C is the resonance at 7MHz? What is the value of R which results in the 3-dB filter bandwidth of 350 kHz?

P6. Design a circuit with low loss that makes a 80-Ω antenna on one end look like a 500-Ω impedance at the other end.

P7. An impedance inverter is used to transform 200Ω on one side to a 50Ω coaxial cable on the other. Find the elements of the transformer at 7MHz.

P8. A transformer is wound on a FT37-61 core with $A_L=50 \text{nH/turn}^2$. The impedance is transformed from 20 Ω on the primary to 2000 Ω on the secondary which has 50 windings. Find the magnetization inductance of the primary.

P9. In this problem you will convert a parallel (shunt) circuit to an equivalent series circuit.
- Write down the expressions for the impedances of both circuits (Z_S and Z_P);
- Write down the expressions for the Q-factors of both circuits;
- Show that if the two circuits have the same impedance, their Q factors Q_s and Q_p are the same;
- Start from the circuit elements given in the parallel circuit, R_p and X_p, and derive expressions for the elements of the equivalent series circuit, R_s and X_s;
- Find approximate formulas for X_s when Q is large, and for R_s when Q is small.
P10. Use the results from the previous problem to match an antenna that nominally has a 50Ω impedance to the output of a transmitter that has a 5-Ω impedance. The circuit that can be used for this is shown in Figure P12 below.

Figure P10. (a) A transmitter connected to an antenna and the equivalent circuit. (b) Converting a 50-Ω antenna impedance to a 5-Ω impedance presented to the transmitter.

Use the conversion formulas you derived above to find $X_C = X_p$ and X_L. To do this, first find X_C so that when the capacitor and $R_p = 50\,\Omega$ resistor are converted to a series connection, the resistance is equal the desired $R_S = 5\,\Omega$. How do you choose X_L? Redraw the final circuit that matches the 5-Ω transmitter output impedance to the 50-Ω antenna impedance. Indicate inductor and capacitor values in nH and nF, respectively, for our transmit frequency at 7MHz.