ECEN 3300
Linear Systems
Class Meeting 20

Properties of Fourier Series
Today’s Topics: Properties of FS

• Convergence of Fourier Series
 – Dirichlet Conditions
 – Gibb’s phenomena

• Properties of Series
 – Linearity
 – Time shift/reversal
 – Time scaling
 – Multiplication
 – Conjugate symmetry
 – Parseval symmetry
Fourier Series

\[x(t) = \sum_{k=-\infty}^{\infty} a_k \exp(jk\omega_0 t) \]

\[a_k = \frac{1}{T} \int_{0}^{T} x(t) \exp(-jk\omega_0 t) dt \]

\[\omega_0 = \frac{2\pi}{T} \]

• Definition of Fourier Series Coefficients
Convergence of Fourier Series

- Dirichlet Conditions
 1. Absolute integrability
 2. Bounded variation
 3. Finite number of discontinuities

- What do they mean and do they have mathematical statements?
Example 3.5 (Revisited)

• Find the series representation for

• What does a plot of the coefficients look like?
Coefficients for Example 3.5

- Why are there so many non-zero coefficients?
Gibb’s Phenomena

- Does not converge uniformly near the edge
Properties of Fourier Series

- **Linearity**

\[x(t) \leftrightarrow a_k \]
\[y(t) \leftrightarrow b_k \]
\[x(t) + y(t) \leftrightarrow a_k + b_k \]

- Fourier series (transform) is linear so superposition applies

- How to show?
Time Shift

\[x(t) \leftrightarrow a_k \]

\[x(t - t_0) \leftrightarrow a_k \exp(-jk\omega_0 t_0) \]

• How to show?
Time Reversal

\[x(t) \leftrightarrow a_k \]

\[x(t) \rightarrow x(-t) \]

\[a_k \rightarrow a_{-k} \]

• How to show?
Time Scaling

\[x(t) = \sum_{-\infty}^{\infty} a_k \exp(jk\omega_0 t) \]

\[x(\alpha t) = \sum_{-\infty}^{\infty} a_k \exp(jk(\alpha\omega_0)t) \]

• Have the a’s changed?
• What has changed?
Time Scaling II

\[a_k = \frac{1}{T} \int_{-\infty}^{\infty} (x(\tau) \exp(-jk\omega_0 \tau)) d\tau \]

\[b_k = \frac{1}{\alpha T} \int_{0}^{\alpha T} (x(\alpha \tau) \exp(-jk\omega_0 \alpha \tau)) d(\alpha \tau) = a_k \]

- The a’s haven’t changed?
- The period has changed?
Multiplication

\[x(t) \leftrightarrow a_k \]

\[y(t) \leftrightarrow b_k \]

\[x(t)y(t) \leftrightarrow \sum_{i=-\infty}^{\infty} a_{k-i}b_i = \sum_{i=-\infty}^{\infty} a_i b_{k-i} \]

• Relation between times and convolution

• Leave the details to the reader
Conjugate Symmetry

\[x(t) \leftrightarrow a_k \]

\[x^*(t) \leftrightarrow a^*_{-k} \]

- How to show?
- What does this say about representations of real signals?
- Imaginary signals?
Parseval’s Relation

\[x(t) \leftrightarrow a_k \]

\[\frac{1}{T} \int_{0}^{T} |x(t)|^2 dt = \sum_{-\infty}^{\infty} |a_k|^2 \]

- How to show?
- Why is this useful?
Example 3.6

• Find the Fourier series for

• Relates back to problem 3.5
Example 3.5 (Revisited)

- Find the series representation for

- What does a plot of the coefficients look like?
Coefficients for Example 3.5

- Why are there so many non-zero coefficients?
Example 3.6

• Find the Fourier series for

• Relates back to problem 3.5 – How?
Example 3.6 Solutions

- Note that

\[g(t) = x(t - 1) - \frac{1}{2} \]
Example 3.7

- Find the a in $x(t) \leftrightarrow a_k$
Example 3.7

• Note that

• Is the derivative of

• And integrate by parts
Example 3.8

\[x(t) = \sum_{-\infty}^{\infty} \delta(t - kT) \]

- Find the \(a \) in

\[x(t) \leftrightarrow a_k \]

- Apply to a train of square pulses width \(2T \)
Example 3.9

\(x(t) \leftrightarrow a_k \)

- \(x(t) \) is real
- \(x(t) \) has period \(T=4 \)

\[a_k = 0 \text{ for } |k| > 1 \]

\(y(t) \leftrightarrow b_k \) is odd with

\[b_k = \exp(-j\pi k/2)a_k \text{ is odd} \]

\[\frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 \, dt = \frac{1}{2} \]

- What is \(x(t) \)?