Appendix 17: Delta Function

A17.1. General

A delta function (also called Dirac delta function) is a mathematical function, which is defined as:

\[\delta(x) = \infty, \text{ for } x = 0 \]
\[\delta(x) = 0, \text{ for } x \neq 0 \]

(A17.1.1)

\[\text{and } \int_{-\infty}^{\infty} \delta(x) dx = 1 \]

i.e. a function which is only non-zero at \(x = 0 \) with a total area equal to one.

The delta function is symmetric:

\[\delta(-x) = \delta(x) \]

(A17.1.2)

and when multiplied with a function \(F(x) \) and integrated, yields this function’s value at \(x = 0 \):

\[\int_{-\infty}^{\infty} F(x) \delta(x) dx = F(0) \]

(A17.1.3)

Similarly, a shifted delta function will result in the function’s value at that point:

\[\int_{-\infty}^{\infty} F(x) \delta(x - \xi) dx = F(\xi) \]

(A17.1.4)

A17.2. Solving Schrödinger’s equation with a delta function potential

The one-dimensional Schrödinger’s equation with a delta function potential with area, \(M \), and located at \(x = x_0 \) is as follows:

\[-\frac{\hbar^2}{2m} \frac{d^2 \Psi}{dx^2} + M \delta(x - x_0) \Psi(x) = E \Psi(x) \]

(A17.2.1)
The general solutions are the same as for \(V(x) = 0 \) on either side of \(x = x_0 \):

\[
\Psi(x) = A \sin kx + B \cos kx \quad \text{for} \ x < x_0
\]

\[
\Psi(x) = C \sin kx + D \cos kx \quad \text{for} \ x > x_0
\]

with \(k = \frac{\sqrt{2mE}}{\hbar} \) \hspace{1cm} (A17.2.2)

and the constants \(A, B, C \) and \(D \) must be determined from the boundary conditions.

The boundary condition at the delta function is obtained by integrating Schrödinger’s equation just around the delta function, yielding:

\[
\int_{x_0 - \varepsilon}^{x_0 + \varepsilon} \left(-\frac{\hbar^2}{2m} \frac{d^2\Psi}{dx^2} + M \delta(x - x_0) \Psi(x) dx = \int_{x_0 - \varepsilon}^{x_0 + \varepsilon} E \Psi(x) dx \right) \hspace{1cm} (A17.2.3)
\]

Which reduces in the limit where \(\varepsilon \to 0 \) to:

\[
\left. \frac{d\Psi}{dx} \right|_{x_0 + \varepsilon} - \left. \frac{d\Psi}{dx} \right|_{x_0 - \varepsilon} = \frac{2m}{\hbar^2} M \Psi(x_0) \hspace{1cm} (A17.2.4)
\]

The boundary conditions at \(x = x_0 \) are: 1) the continuity of the wave function at \(x_0 \) and 2) a discontinuity of the derivative of the wave function at \(x_0 \) with the difference in slope given by A17.2.4.\(^1\)

The resulting equations are:

\[
\Psi(x_0) = A \sin kx_0 + B \cos kx_0 = C \sin kx_0 + D \cos kx_0
\]

and

\[
kA \cos kx_0 - kB \sin kx_0 = kC \cos kx_0 - kD \sin kx_0 + \frac{2m}{\hbar^2} M \Psi(x_0) \hspace{1cm} (A17.2.5)
\]

with \(k = \frac{\sqrt{2mE}}{\hbar} \)

\(^1\) This boundary condition can easily be generalized for any potential that includes one or more delta functions.
A17.3. Example: tunneling through a delta function

As an example we consider an incoming wave with amplitude 1 incident on the delta function with area, \(M \), and located at \(x = 0 \). The incident, reflected and transmitted waves are then described by:

\[
\Psi_i(x) = \exp ikx = \cos kx + i \sin kx
\]
\[
\Psi_r(x) = r \exp(-ikx) = r \cos kx - ir \sin kx \tag{A17.3.1}
\]
\[
\Psi_t(x) = t \exp(ikx) = t \cos kx + it \sin kx
\]

Where \(r \) is the amplitude of the reflected wave and \(t \) is the amplitude of the transmitted wave. The sum of the incident and reflected wave is the wave function for \(x < 0 \) and the transmitted wave function is the wave function for \(x > 0 \), so that:

\[
A = i(1 - r), B = 1 + r, C = it \text{ and } D = t \tag{A17.3.2}
\]

The boundary conditions at \(x = 0 \) then become:

\[
\Psi(x_0) = 1 + r = t \text{ and } ik(1 - r) =ikt + \frac{2m}{\hbar^2}Mt \tag{A17.3.3}
\]

So that

\[
iki(2 - t) = ikt + \frac{2m}{\hbar^2}Mt \text{ or } t = \frac{ikh^2}{mM + ikh^2} \tag{A17.3.4}
\]

and \(r = t - 1 = \frac{-mM}{mM + ikh^2} \)

Note that both \(r \) and \(t \) are complex numbers, which accounts for a phase shift relative to the incident wave.

The corresponding transmission and reflection are:

\[
T = t t^* = \frac{k^2 \hbar^4}{m^2 M^2 + k^2 \hbar^4} = \frac{2E \hbar^2}{mM^2 + 2E \hbar^2} \tag{A17.3.5}
\]

and \(R = r r^* = \frac{mM^2}{mM^2 + 2E \hbar^2} \)

Confirming that \(T + R = 1 \).