
 

     

4.4.7. Heterojunction Diode Current  

This section is very similar to the one discussing currents across a homojunction. Just as for the 
homojunction we find that current in a p-n junction can only exist if there is recombination or 
generation of electron and holes somewhere throughout the structure. The ideal diode equation is 
a result of the recombination and generation in the quasi-neutral regions (including 
recombination at the contacts) whereas recombination and generation in the depletion region 
yield enhanced leakage or photocurrents. 

4.4.6.1.Ideal diode equation 

For the derivation of the ideal diode equation we will again assume that the quasi-Fermi levels 
are constant throughout the depletion region so that the minority carrier densities at the edges of 
the depletion region and assuming "low" injection are still given by: 

 

t

a

a

pi

t

ai
npp V

V
N

n

V
V

nxxn exp)exp()(
2
,

=
−

−==
φ

 
(4.4.57) 

 

t

a

d

ni

t

ai
pnn V

V
N

n

V
V

pxxp exp)exp()(
2
,=

−
−=−=

φ
 

(4.4.58) 

Where ni,n and ni,p refer to the intrinsic concentrations of the n and p region. Solving the diffusion 
equations with these minority carrier densities as boundary condition and assuming a "long" 
diode we obtain the same expressions for the carrier and current distributions:  
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Where Lp and Ln are the hole respectively the electron diffusion lengths in the n-type and p-type 
material, respectively The difference compared to the homojunction case is contained in the 
difference of the material parameters, the thermal equilibrium carrier densities and the width of 
the depletion layers. Ignoring recombination of carriers in the base yields the total ideal diode 



current density Jideal: 
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This expression is valid only for a p-n diode with infinitely long quasi-neutral regions.  For 
diodes with a quasi-neutral region shorter than the diffusion length, and assuming an infinite 
recombination velocity at the contacts, the diffusion length can simply be replaced by the width 
of the quasi-neutral region. For more general boundary conditions, we refer to section 4.2.1.c 

Since the intrinsic concentrations depend exponentially on the energy bandgap, a small 
difference in bandgap between the n-type and i-type material can cause a significant difference 
between the electron and hole current and that independent of the doping concentrations.  

4.4.6.2.Recombination/generation in the depletion region 

Recombination/generation currents in a heterojunction can be much more important than in a 
homojunction because most recombination/generation mechanisms depend on the intrinsic 
carrier concentration which depends strongly on the energy bandgap. We will consider only two 
major mechanisms: band-to-band recombination and Shockley-Hall-Read recombination. 

4.4.6.2.1. Band-to-band recombination 

The recombination/generation rate is due to band-to-band transitions is given by: 
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where b is the bimolecular recombination rate. For bulk GaAs this value is 1.1 x 10-10 cm3s-1. For 
2
innp >  (or under forward bias conditions) recombination dominates, whereas for 2

innp <  
(under reverse bias conditions) thermal generation of electron-hole pairs occurs. Assuming 
constant quasi-Fermi levels in the depletion region this rate can be expressed as a function of the 

applied voltage by using the "modified" mass-action law ta VV
innp /2e= , yielding: 
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The current is then obtained by integrating the recombination rate throughout the depletion 
region: 
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For uniform material (homojunction) this integration yielded: 
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Whereas for a p-n heterojunction consisting of two uniformly doped regions with different 
bandgap, the integral becomes: 
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4.4.6.2.2. Schockley-Hall-Read recombination 

Provided bias conditions are "close" to thermal equilibrium the recombination rate due to a 
density Nt of traps with energy Et and a recombination/generation cross-section σ is given by 
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where ni is the intrinsic carrier concentration, vth is the thermal velocity of the carriers and Ei is 

the intrinsic energy level.  For Ei = Et and 
tht vN σ

τ
1

0 =  this expression simplifies to: 
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Throughout the depletion region, the product of electron and hole density is given by the 
"modified" mass action law: 
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This enables to find the maximum recombination rate which occurs for n = p = ni ta VV 2/e  
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The total recombination current is obtained by integrating the recombination rate over the 
depletion layer width: 
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which can be written as a function of the maximum recombination rate and an "effective" width 
x': 
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where 
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Since USHR,max  is larger than or equal to USHR anywhere within the depletion layer one finds that 
x ' has to be smaller than xd = xn + xp.  (Note that for a p-i-N or p-qw-N structure the width of the 
intrinsic/qw layer has to be included).   

The calculation of x ' requires a numerical integration.  The carrier concentrations n and p in the 
depletion region are given by: 
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Substituting these equations into [4.5.18] then yields x '. 

4.4.6.3.Recombination/generation in a quantum well 

4.4.6.3.1. Band-to-band recombination 

Recognizing that band-to-band recombination between different states in the quantum well has a 
different coefficient, the total recombination including all possible transitions can be written as: 
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with   
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where En,e and En,h are calculated in the absence of an electric field. To keep this derivation 
simple, we will only consider radiative transitions between the n = 1 states for which: 
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both expressions can be combined yielding 
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4.4.6.3.1.1. Low voltage approximation (non-degenerate carrier concentration)  

For low or reversed bias conditions the carrier densities are smaller that the effective densities of 
states in the quantum well. Equation [4.2.55] then simplifies to: 
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and the current becomes 
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This expression is similar to the band-to-band recombination current in bulk material. 

4.4.6.3.1.2. High voltage approximation (strongly degenerate) 

For strong forward bias conditions the quasi-Fermi level moves into the conduction and valence 
band. Under these conditions equation [4.4.26] reduces to: 
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If in addition one assumes that N1 = P1 and Nc,qw << Nv,qw this yields:   
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and the current becomes: 
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for GaAs/AlGaAs quantum wells, B1 has been determined experimentally to be 5 x 10-5cm2s-1 

4.4.6.3.2. SHR recombination 

A straight forward extension of the expression for bulk material to two dimensions yields 
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and the recombination current equals: 
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This expression implies that carriers from any quantum state are equally likely to recombine with 
a midgap trap. 

4.4.6.4.Recombination mechanisms in the quasi-neutral region 

Recombination mechanisms in the quasi-neutral regions do not differ from those in the depletion 
region. Therefore, the diffusion length in the quasi-neutral regions, which is defined as Ln = 

nnD τ  and Lp = ppD τ , must be calculated based on band-to-band as well as SHR 

recombination. Provided both recombination rates can be described by a single time constant, the 
carrier lifetime is obtained by summing the recombination rates and therefore summing the 
inverse of the life times.  
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for low injection conditions and assuming n-type material, we find:  
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yielding the hole life time in the quasi-neutral n-type region: 
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4.4.6.5.The total diode current 

Using the above equations we find the total diode current to be: 

 idealSHRbbtotal JJJJ ++= −  (4.4.96) 

from which the relative magnitude of each current can be calculated. This expression seems to 
imply that there are three different recombination mechanisms. However the ideal diode equation 
depends on all recombination mechanism, which are present in the quasi-neutral region as well 
as within the depletion region, as described above.  

The expression for the total current will be used to quantify performance of heterojunction 
devices. For instance, for a bipolar transistor it is the ideal diode current for only one carrier type, 
which should dominate to ensure an emitter efficiency close to one. Whereas for a light emitting 
diode the band-to-band recombination should dominate to obtain a high quantum efficiency.  

4.4.6.6.The graded p-n diode 

4.4.6.6.1. General discussion of a graded region 

Graded regions can often be found in heterojunction devices. Typically they are used to avoid 
abrupt heterostructures, which limit the current flow. In addition they are used in laser diodes 
where they provide a graded index region, which guides the lasing mode. An accurate solution 
for a graded region requires the solution of a set of non-linear differential equations.  

Numeric simulation programs provide such solutions and can be used to gain the understanding 
needed to obtain approximate analytical solutions. A common misconception regarding such 
structures is that the flatband diagram is close to the actual energy band diagram under forward 
bias.  Both are shown in the figure below for a single-quantum-well graded-index separate-
confinement heterostructure (GRINSCH) as used in edge-emitting laser diodes which are 
discussed in more detail in Chapter 6.  
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Fig. 4.6 Flat band diagram of a graded AlGaAs p-n diode with x = 40 % in the 

cladding regions, x varying linearly from 40 % to 20 % in the graded regions 
and x = 0% in the quantum well. 
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Fig. 4.7 Energy band diagram of the graded p-n diode shown above under forward 

bias. Va = 1.5 V, Na = 4 x 1017 cm-3, Nd = 4 x 1017 cm-3. Shown are the 
conduction and valence band edges (solid lines) as well as the quasi-Fermi 
energies (dotted lines). 

The first difference is that the conduction band edge in the n-type graded region as well as the 
valence band edge in the p-type graded region are almost constant. This assumption is correct if 
the majority carrier quasi-Fermi energy, the majority carrier density and the effective density of 
states for the majority carriers don't vary within the graded region. Since the carrier 
recombination primarily occurs within the quantum well (as it should be in a good laser diode), 



 

     

the quasi-Fermi energy does not change in the graded regions, while the effective density of 
states varies as the three half power of the effective mass, which varies only slowly within the 
graded region. The constant band edge for the minority carriers implies that the minority carrier 
band edge reflects the bandgap variation within the graded region. It also implies a constant 
electric field throughout the grade region which compensates for the majority carrier bandgap 
variation or: 
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where Ec0(x) and Ev0(x) are the conduction and valence band edge as shown in the flatband 
diagram. The actual electric field is compared to this simple expression in the figure below. The 
existence of an electric field requires a significant charge density at each end of the graded 
regions caused by a depletion of carriers. This also causes a small cusp in the band diagram.  
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Fig. 4.8 Electric Field within a graded p-n diode. Compared are a numeric simulation 

(solid line) and equation [4.5.39] (dotted line). The field in the depletion 
regions around the quantum well was calculated using the linearized Poisson 
equation as described in the text. 

Another important issue is that the traditional current equation with a drift and diffusion term has 
to be modified. We now derive the modified expression by starting from the relation between the 
current density and the gradient of the quasi-Fermi level: 
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where it was assumed that the electron density is non-degenerate. At first sight it seems that only 
the last term is different from the usual expression. However the equation can be rewritten as a 
function of Ec0(x), yielding: 
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This expression will be used in the next section to calculate the ideal diode current in a graded p-
n diode. We will at that time ignore the gradient of the effective density of states. A similar 
expression can be derived for the hole current density, Jp. 

4.4.6.6.2. Ideal diode current 

Calculation of the ideal diode current in a graded p-n diode poses a special problem since a 
gradient of the bandedge exists within the quasi-neutral region. The derivation below can be 
applied to a p-n diode with a graded doping concentration as well as one with a graded bandgap 
provided that the gradient is constant. For a diode with a graded doping concentration this 
implies an exponential doping profile as can be found in an ion-implanted base of a silicon 
bipolar junction transistor. For a diode with a graded bandgap the bandedge gradient is constant 
if the bandgap is linearly graded provided the majority carrier quasi-Fermi level is parallel to the 
majority carrier band edge. 

Focusing on a diode with a graded bandgap we first assume that the gradient is indeed constant 
in the quasi-neutral region and that the doping concentration is constant. Using the full depletion 
approximation one can then solve for the depletion layer width. This requires solving a 
transcendental equation since the dielectric constant changes with material composition (and 
therefore also with bandgap energy). A first order approximation can be obtained by choosing an 
average dielectric constant within the depletion region and using previously derived expressions 
for the depletion layer width. Under forward bias conditions one finds that the potential across 
the depletion regions becomes comparable to the thermal voltage. One can then use the 
linearized Poisson equation or solve Poisson's equation exactly (section 4.1.2) This approach was 
taken to obtain the electric field in Fig.4.8. 

The next step requires solving the diffusion equation in the quasi-neutral region with the correct 
boundary condition and including the minority carrier bandedge gradient. For electrons in a p-
type quasi-neutral region we have to solve the following modified diffusion equation 
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which can be normalized yielding: 
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If the junction interface is at x = 0 and the p-type material is on the right hand side, extending up 
to infinity, the carrier concentrations equals: 
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where we ignored the minority carrier concentration under thermal equilibrium which limits this 
solution to forward bias voltages.  Note that the minority carrier concentration np0(xp) at the edge 
of the depletion region (at x = xp) is strongly voltage dependent since it is exponentially 
dependent on the actual bandgap at x = xp. 

The electron current at x = xp is calculated using the above carrier concentration but including the 
drift current since the bandedge gradient is not zero, yielding: 
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The minus sign occurs since the electrons move from left to right for a positive applied voltage. 
For α = 0, the current equals the ideal diode current in a non-graded junction: 
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while for strongly graded diodes (αLn >> 1) the current becomes: 
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For a bandgap grading given by: 
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one finds 



 

kTd

Eg

2

∆
=α  

(4.4.109) 

and the current density equals: 
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where Jn(α = 0) is the current density in the absence of any bandgap grading. 

 


