INTRODUCTION TO CIRCUITS AND ELECTRONICS

ECEN 2250 – Fall Semester 2015/16

Prof. Milos Popovic

Week 4 – Lecture 9
Today’s Summary

• Plan
 • Administrative
 • Finish a few circuit reduction examples
 • Systematic node-voltage analysis (Section 3.1)
August

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>Lecture 1</td>
</tr>
<tr>
<td></td>
<td>Week 1 slides [PDF]</td>
</tr>
<tr>
<td>26</td>
<td>Lecture 2</td>
</tr>
<tr>
<td>28</td>
<td>Lecture 3</td>
</tr>
<tr>
<td></td>
<td>HW #1 due 11:59pm</td>
</tr>
<tr>
<td></td>
<td>Homework 1 problem sheet [PDF] - given out Monday Sep 24; book problem pages [PDF]</td>
</tr>
<tr>
<td></td>
<td>HW1 Solutions [PDF]</td>
</tr>
</tbody>
</table>

September

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Lecture 5</td>
</tr>
<tr>
<td>4</td>
<td>Lecture 6</td>
</tr>
<tr>
<td></td>
<td>HW #2 due 11:59pm</td>
</tr>
<tr>
<td></td>
<td>Homework 2 problem sheet [PDF] - posted Aug 29</td>
</tr>
<tr>
<td></td>
<td>HW2 Solutions [PDF]</td>
</tr>
<tr>
<td>7</td>
<td>NO CLASS</td>
</tr>
<tr>
<td></td>
<td>Labour Day Holiday</td>
</tr>
<tr>
<td>9</td>
<td>Lecture 7</td>
</tr>
<tr>
<td>11</td>
<td>Lecture 8</td>
</tr>
<tr>
<td></td>
<td>HW #3 due 11:59pm</td>
</tr>
<tr>
<td></td>
<td>Homework 3 problem sheet [PDF] - posted Sep 7</td>
</tr>
<tr>
<td>14</td>
<td>Lecture 9</td>
</tr>
<tr>
<td>16</td>
<td>Lecture 10</td>
</tr>
<tr>
<td>18</td>
<td>Lecture 11</td>
</tr>
<tr>
<td>21</td>
<td>Lecture 12</td>
</tr>
<tr>
<td>23</td>
<td>Lecture 13</td>
</tr>
<tr>
<td>25</td>
<td>Monthly Exam #1 (on roughly chapters 1-3, to be updated as we get closer to the exam)</td>
</tr>
<tr>
<td>28</td>
<td>Lecture 14</td>
</tr>
<tr>
<td>30</td>
<td>Lecture 15</td>
</tr>
<tr>
<td>Lecture No.</td>
<td>Topic</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>1</td>
<td>Introduction; The Basics (charge, voltage, current)</td>
</tr>
<tr>
<td>2</td>
<td>Element Laws and Connection (Kirchhoff's Laws)</td>
</tr>
<tr>
<td>3</td>
<td>Combined Use of the Circuit Laws</td>
</tr>
<tr>
<td>4</td>
<td>More Basic Circuit Analysis</td>
</tr>
<tr>
<td>5</td>
<td>Equivalent Circuits</td>
</tr>
<tr>
<td>6</td>
<td>Voltage and Current Division; Thévenin and Norton Equivalent Circuits</td>
</tr>
<tr>
<td>7</td>
<td>Reduction of (Simplifying) Circuits</td>
</tr>
<tr>
<td>8</td>
<td>More Examples of Analyzing Simple Circuits</td>
</tr>
<tr>
<td>9</td>
<td>Systematic Circuit Analysis: The Node-Voltage Method</td>
</tr>
<tr>
<td>10</td>
<td>More Nodal Analysis</td>
</tr>
<tr>
<td>11</td>
<td>Sinusoidal (AC) Waveforms; Capacitors and Inductors</td>
</tr>
<tr>
<td>12</td>
<td>Capacitors and Inductors (continued)</td>
</tr>
<tr>
<td>13</td>
<td>Complex Numbers; Phasors</td>
</tr>
<tr>
<td>14</td>
<td>More Phasors</td>
</tr>
<tr>
<td>15</td>
<td>And Still More Phasors: Impedance</td>
</tr>
<tr>
<td>16</td>
<td>Phasor Analysis of Circuits</td>
</tr>
<tr>
<td>17</td>
<td>Translating DC Concepts to Phasor Ones; Phasor Node-voltage Analysis</td>
</tr>
<tr>
<td>18</td>
<td>Phasor Analysis of More Complicated Circuits</td>
</tr>
</tbody>
</table>
Engineering Fellow

- Matthew Haney (matthew.haney@colorado.edu)

- Will provide additional 2h office hours Thursdays 2-4pm
- Will do a review session before each Test and Final Exam
- Will be reachable for ad-hoc assistance
- I will inform the class shortly of his office
Test #1: Friday, September 25

• Will post sections covered by end of week, but count on Chapters 1-3, and all Homework until then.

• HW#4 due this Friday. Short HW#5 due next Wednesday. Will be posted today.

• Best times for review session: Mon aft/eve, Thu mor/aft/eve
 • Brief input from class
 • Doodle poll
Example 3-44

[Diagram of an electrical circuit with a 15 V source, 5 Ω, 10 Ω, and 15 Ω resistors, and a load symbol.]
Example 3-44

(a) 15 V

(b) 15 V

(c) 15 V

(d) 10 V

(e) 545 mA

Figure 3-44
© John Wiley & Sons, Inc. All rights reserved.
(Ladder Example from Lecture 7)
Exercise 3-28 but find Norton eq.

We got 4V, 5 kohms Thevenin Norton: 0.8A, 5 kohms.
Ex 3-18

- Find Thevenin equivalent
- Find power to 10 kohm resistor, or to 5V source.
Ex 3-18

Figure 3-47
© John Wiley & Sons, Inc. All rights reserved.
Ex 3-19

- Find Norton equivalent
- Find output current i when load is dissipating 5W.
Node-Voltage Method

- Section 3.1
All circuit analysis

1. Connection constraints
 - KCL (zero net current out of a node)
 - KVL (zero net voltage drop around a closed circuit)

2. Device constraints
 - i-v relationship (e.g. \(V = I*R \))

Complexity to solve:
 - \(E \) circuit elements: 2\(E \) equations with 2\(E \) unknowns (i, v for each)
All circuit analysis

• Complexity to solve:
 • E circuit elements: 2E equations with 2E unknowns (i, v for each)

• Connection constraints: KCL, KVL
 • Elements: E eqs
 • KCL: N-1 eqs
 • KVL: E-N+1 eqs
 • Total: 2E equations, 2E unknowns (1 current + 1 voltage per element)
Node-Voltage Method

• Instead of voltages across an element...

• ...define node voltages relative to a reference point.

• Voltage across any element is a difference between two node voltages.
Node-Voltage Method

- Voltage across any element is a difference between two node voltages

- Case A: \(v_1 = v_A \)
- Case B: \(v_1 = v_A - v_B \)
- “Local KVL”
Today’s Summary

- **Plan**
 - Systematic node-voltage analysis (Section 3.1)
 - Supernodes
 - Matrix formulation
 - Examples

- **Next week:**
 - AC (sinusoidal) signals
 - Capacitors and inductors

- **Next Friday: Test #1 (of 3 tests + 1 final exam)**
 - Up to Lecture 12 (end of Monday)
Where we are

August

<table>
<thead>
<tr>
<th>24</th>
<th>26</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 1</td>
<td>Lecture 2</td>
<td>Lecture 3</td>
</tr>
<tr>
<td>Week 1 slides (PDF)</td>
<td>HW #1 due 11:59pm</td>
<td>Homework 1 problem sheet (PDF) - given out Monday Sep 24; book problem pages (PDF)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>HW1 Solutions (PDF)</td>
</tr>
</tbody>
</table>

September

<table>
<thead>
<tr>
<th>2</th>
<th>4</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 5</td>
<td>Lecture 6</td>
<td>NO CLASS</td>
</tr>
<tr>
<td></td>
<td>HW #2 due 11:59pm</td>
<td>Labour Day Holiday</td>
</tr>
<tr>
<td></td>
<td>Homework 2 problem sheet (PDF) - posted Aug 29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HW2 Solutions (PDF)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>9</th>
<th>11</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 7</td>
<td>Lecture 8</td>
<td>Lecture 9</td>
</tr>
<tr>
<td></td>
<td>HW #3 due 11:59pm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homework 3 problem sheet (PDF) - posted Sep 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16</th>
<th>18</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 10</td>
<td>Lecture 11</td>
<td>Lecture 12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>23</th>
<th>25</th>
<th>28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 13</td>
<td>Monthly Exam #1 (on roughly chapters 1-3; to be updated as we get closer to the exam)</td>
<td>Lecture 14</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 30 | | |
|----|----|
Lecture and Reading Schedule

<table>
<thead>
<tr>
<th>Lecture No.</th>
<th>Topic</th>
<th>New Reading Assignment Before Class (from Textbook or Supplemental Notes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction; The Basics (charge, voltage, current)</td>
<td>NONE</td>
</tr>
<tr>
<td>2</td>
<td>Element Laws and Connection (Kirchhoff's Laws)</td>
<td>Chapter 1 and sections 2.1-2.2</td>
</tr>
<tr>
<td>3</td>
<td>Combined Use of the Circuit Laws</td>
<td>Section 2.3</td>
</tr>
<tr>
<td>4</td>
<td>More Basic Circuit Analysis</td>
<td>NONE</td>
</tr>
<tr>
<td>5</td>
<td>Equivalent Circuits</td>
<td>Section 2.4</td>
</tr>
<tr>
<td>6</td>
<td>Voltage and Current Division; Thévenin and Norton Equivalent Circuits</td>
<td>Sections 2.5 and 3.4</td>
</tr>
<tr>
<td>7</td>
<td>Reduction of (Simplifying) Circuits</td>
<td>Section 2.6</td>
</tr>
<tr>
<td>8</td>
<td>More Examples of Analyzing Simple Circuits</td>
<td>NONE</td>
</tr>
<tr>
<td>9</td>
<td>Systematic Circuit Analysis: The Node-Voltage Method</td>
<td>Section 3.1</td>
</tr>
<tr>
<td>10</td>
<td>More Nodal Analysis</td>
<td>NONE</td>
</tr>
<tr>
<td>11</td>
<td>Sinusoidal (AC) Waveforms; Capacitors and Inductors</td>
<td>Sections 5.4 and 6.1-6.2</td>
</tr>
<tr>
<td>12</td>
<td>Capacitors and Inductors (continued)</td>
<td>Section 6.4</td>
</tr>
<tr>
<td>13</td>
<td>Complex Numbers; Phasors</td>
<td>Appendix A and Sections 8.1-8.2</td>
</tr>
<tr>
<td>14</td>
<td>More Phasors</td>
<td>NONE</td>
</tr>
<tr>
<td>15</td>
<td>And Still More Phasors: Impedance</td>
<td>Section 8.3</td>
</tr>
<tr>
<td>16</td>
<td>Phasor Analysis of Circuits</td>
<td>NONE</td>
</tr>
<tr>
<td>17</td>
<td>Translating DC Concepts to Phasor Ones; Phasor Node-voltage Analysis</td>
<td>Sections 8.4-8.5</td>
</tr>
<tr>
<td>18</td>
<td>Phasor Analysis of More Complicated Circuits</td>
<td>NONE</td>
</tr>
</tbody>
</table>
Exercise 3-2

First find node voltages, then find v_x and v_y.

$v_D = 0$
$v_A = 5\text{V}$
$v_C = 6\text{V}$
$v_B = +6-10 = -4\text{V}$

$v_X = v_A - v_B = 9\text{V}$
$v_Y = v_A - v_C = -1\text{V}$
Formulating Node-Voltage Equations

- No need for KVL (it’s implicit now)
- Write only KCL and element laws

Example: 1 ground node, 4 element currents, 2 node voltages
Formulating Node-Voltage Equations (Fig 3-5)

- **KCL**
 - $-i_0 - i_1 - i_2 = 0$
 - $i_2 - i_3 = 0$

- **Elements:**
 - $i_1 = \frac{1}{R_1} v_A$
 - $i_2 = \frac{1}{R_2} (v_A - v_B)$
 - $i_3 = \frac{1}{R_3} v_B$
 - $i_0 = i_S$
Method

N nodes, E elements circuit:
1. Pick a reference node. Label all other voltage node voltages
2. Write KCL equations for all N-1 nodes except reference node
3. Use i-v relationship of each of the E elements to write currents in terms of node voltages and constants
4. Sub element eqs for currents in step 3 into KCL eqns in step 2.

Now you have just N-1 equations with N-1 unknown node voltages (reduced down from 2E). Can write it as a matrix equation, and put into Matlab.
Formulating Node-Voltage Equations

- **KCL**
 - \(-i_0 - i_1 - i_2 = 0\)
 - \(i_2 - i_3 = 0\)
- **Elements:**
 - \(i_1 = \frac{1}{R_1} v_A\)
 - \(i_2 = \frac{1}{R_2} (v_A - v_B)\)
 - \(i_3 = \frac{1}{R_3} v_B\)
 - \(i_0 = i_S\)

- **Matrix formulation:**
 - One equation per KCL eqn
 - Unknowns?
 - Number?
 - Size of matrix?
 - Please read Sec 3-1 part on solving matrix eqns using Cramer’s rule
General approach to writing node voltage equations in matrix by inspection

1. One line = one KCL equation

2. Each KCL eqn: Currents leaving node A are either
 1. \(i = \frac{1}{R} (v_A) \) if R is connected to ground, or...
 2. \(i = \frac{1}{R} (v_A - v_B) \) if R is connected to node B

3. Why symmetric? Because if R is connected from A to B, then it’s connected from B to A.’

4. Unknowns are node voltages. Currents out through resistors into matrix, currents into node from sources into right vector.
Example

\[\begin{bmatrix} \end{bmatrix} \begin{bmatrix} v_A \\ v_B \end{bmatrix} = \begin{bmatrix} \end{bmatrix} \]
Example
Example

\[
\begin{bmatrix}
\frac{1}{R_1} & -\frac{1}{R_1} \\
\frac{1}{R_1} & \frac{1}{R_1}
\end{bmatrix}
\begin{bmatrix}
V_A \\
V_B
\end{bmatrix}
=
\begin{bmatrix}
i_s
\end{bmatrix}
\]
Example

\[
\begin{bmatrix}
\frac{1}{R_1} & -\frac{1}{R_1} \\
-\frac{1}{R_1} & \frac{1}{R_1}
\end{bmatrix}
\begin{bmatrix}
V_A \\
V_B
\end{bmatrix}
= \begin{bmatrix}
i_S
\end{bmatrix}
\]
Example

\[\begin{bmatrix} \frac{1}{R_1} & -\frac{1}{R_1} \\ -\frac{1}{R_1} & \frac{1}{R_1 + R_2} \end{bmatrix} \begin{bmatrix} V_A \\ V_B \end{bmatrix} = \begin{bmatrix} i_S \end{bmatrix} \]
Example

- Symmetric matrix… check!
 - BTW, computers are faster at solving symmetric $A x = b$ problems than arbitrary matrices (look up e.g. LAPACK online)
Example Fig 3-8
Example 3-2
Supernodes: What about when there are voltage sources?

- How many nodes N? (KCL equations?)
- Two less (1 per transformation)
Supernodes: What about when there are voltage sources? Another example.
Supernodes

Method 1

\[v_A = \frac{v_S}{R_S} \]

Method 2

Method 3

Supernode

Figure 3-13
© John Wiley & Sons, Inc. All rights reserved.
Example Fig 3-15
Example Fig 3-17
SINUSOIDAL STEADY STATE, CAPACITORS AND INDUCTORS
DC (steady state) response

![Diagram showing steady state response](image)

*Figure 5-1
© John Wiley & Sons, Inc. All rights reserved.*
Types of waveforms

- Step
- Sinusoid
- Pulse train
- Square wave
- Exponential
- Damped sinusoid
- Sawtooth
- Triangular wave

Figure 5-2
© John Wiley & Sons, Inc. All rights reserved.
Sinusoidal signals
Sinusoidal signals

\[v(t) = V_A \cos\left(\frac{2\pi t}{T_0} \right) \text{ V} \]

\[T_S = 0 \]

\[V_A \]

\[-V_A \]

\(T_0 \)

\(T_S \)
Sinusoidal signals

\[v(t) = V_A \cos\left(\frac{2\pi t}{T_0} - \phi\right) \text{V} \]

\[T_S > 0 \]

Figure 5-22b
© John Wiley & Sons, Inc. All rights reserved.
Sinusoidal signals

\[v(t) = V_A \cos \left(\frac{2\pi t}{T_0} + \phi \right) V \]

\[T_S < 0 \]

Figure 5-22c
© John Wiley & Sons, Inc. All rights reserved.
Any function can be represented as a linear superposition (sum) of sinusoids.
Therefore if you find the circuit response for a sinusoidal waveform, you have it for any waveform!
Capacitor
Capacitor

Figure 6-1
© John Wiley & Sons, Inc. All rights reserved.
Capacitor

(a)

Figure 6-3a
© John Wiley & Sons, Inc. All rights reserved.
Capacitor

\[i_C(t) \quad (b) \]

\[v_C(t) \quad (V) \]

\[t \quad (ms) \]

\[i_C(t) \quad (mA) \]

\[t \quad (ms) \]
Capacitor

\[i_C(t) \quad C \quad v_C(t) \]

(a)

(b)
Inductor

\[L \]

\[v_L(t) \]

\[i_L(t) \]

\[\lambda(t) \]

\[di_L(t) \]

\[L \]

\[1 \]