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1. Introduction 

In connection with this experiment, you are selecting the gains in your feedback loop to 

obtain a well-behaved closed-loop response (from the reference voltage to the shaft 

speed). The transfer function of this response contains two poles, which can be real or 

complex. This document derives the step response of the general second-order step 

response in detail, using partial fraction expansion as necessary. 

 

 

2. Transient response of the general second-order system 

Consider a circuit having the following second-order transfer function H(s): 

   vout(s)
vin(s)

= H (s) =
H 0

1 + 2ζ s
ω0

+ s
ω0

2

 (1) 

where H0, ζ, and ω0 are constants that depend on the circuit element values K, R, C, etc. 

(For our experiment, vin is the speed reference voltage vref, and vout is the wheel speed ω) 

In the case of a passive circuit containing real positive inductor, capacitor, and resistor 

values, the parameters ζ and ω0 are positive real numbers. The constants H0, ζ, and ω0 

are found by comparing Eq. (1) with the actual transfer function of the circuit. It is 

common practice to measure the transient response of the circuit using a unit step 

function u(t) as an input test signal: 

  vin(t) = (1 V) u(t)  (2) 
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The initial conditions in the circuit are set to zero, and the output voltage waveform is 

measured. 

This test approximates the conditions of transients often encountered in actual 

operation. It is usually desired that the output voltage waveform be an accurate 

reproduction of the input (i.e., also a step function). However, the observed output 

voltage waveform of the second order system deviates from a step function because it 

exhibits ringing, overshoot, and nonzero rise time. Hence, we might try to select the 

component values such that the ringing, overshoot, and rise time are minimized. 

The output voltage waveform vout(t) can be found using the Laplace transform. 

The transform of the input voltage is 

  vin(s) = 1
s  (3) 

The Laplace transform of the output voltage is equal to the input vin(s) multiplied by the 

transfer function H(s): 

   vout(s) = H (s) vin(s) = 1
s

H 0

1 + 2ζ s
ω0

+ s
ω0

2

 (4) 

The inverse transform is found via partial fraction expansion.  

The roots of the denominator of vout(s) occur at s = 0 and (by use of the quadratic 

formula) at 

   s1, s2 = – ζω0 ± ω0 ζ2 – 1  (5) 

Three cases occur: 

• ζ > 1. The roots s1 and s2 are real. This is called the overdamped case. 

• ζ = 1. The roots s1 and s2 are real and repeated: s1 = s2 = –ζω0. This case 

is called critically damped. 

• ζ < 1. The roots s1 and s2 are complex, and can be written 

   s1, s2 = – ζω0 ± jω0 1 – ζ 2
 (6) 

 This is called the underdamped case. 
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Figure 2 illustrates how the positions of 

the roots, or poles, vary with ζ. For ζ = 

∞, there are real poles at s = 0 and at s = 

–∞. As ζ decreases from ∞ to 1, these 

real poles move towards each other 

until, at ζ = 1, they both occur at s = –

ω0. Further decreasing ζ causes the 

poles to become complex conjugates as 

given by Eq. (6). Figure 3 illustrates 

how the poles then move around a circle 

of radius ω0 until, at ζ = 0, the poles 

have zero real parts and lie on the 

imaginary axis. Figure 2 is called a root 

locus diagram, because it illustrates how 

the roots of the denominator polynomial of H(s) move in the complex plane as the 

parameter ζ is varied between 0 and ∞. 

Several other cases can be defined that are normally not useful in practical 

engineering systems. When ζ = 0, the roots have zero real parts. This is called the 

undamped case, and the output voltage waveform is sinusoidal. The transient excited by 

the step input does not decay for large t. When ζ < 0, the roots have positive real parts 

and lie in the right half of the complex plane. The output voltage response in this case is 

unstable, because the expression for vout(t) contains exponentially growing terms that 

increase without bound for large t. 

Partial fraction expansion 

is used below to derive the output 

voltage waveforms for the cases 

that are have useful engineering 

applications, e.g. the overdamped, 

critically damped, and 

underdamped cases. 

2.1. Overdamped case, ζ  > 1 

Partial fraction expansion of Eq. 

(4) leads to 

– 

Re (s)

Im (s)

LHP
RHP

– 0

 =  =  = 

 = 

 = 
– j 0

j 0

 
Fig. 2. Location of the two poles of H(s) vs. ζ, as described 

by Eqs. (5) and (6). 
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Fig. 3. For 0 ≤ ζ < 1, the complex conjugate poles 

lie on a circle of radius ω0. 
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  vout(s) =
K1
s +

K2
s – s1

+
K3

s – s2  (7) 

Here, s1 and s2 are given by Eq. (5), and the residues K1, K2 and K3 are given by 

   
K1 = s 1

s
H 0

1 + 2ζ s
ω0

+ s
ω0

2

s = 0

K2 = s – s1
1
s

H 0

1 + 2ζ s
ω0

+ s
ω0

2

s = s1

K3 = s – s2
1
s

H 0

1 + 2ζ s
ω0

+ s
ω0

2

s = s2  (8) 

Evaluation of these expressions leads to 

  K1 = H 0

K2 = s – s1
1
s

H 0

1 – s
s1

1 – s
s2

s = s1

= –
s2

s2 – s 1

H 0

K3 = s – s2
1
s

H 0

1 – s
s1

1 – s
s2

s = s2

= –
s1

s1 – s 2

H 0

 (9) 

The inverse transform is therefore 

  
vout(t) = H 0u(t) 1 –

s2

s2 – s1
es 1t –

s1

s1 – s2
es2t

 (10) 

In the overdamped case, the output voltage response contains decaying exponential 

terms, and the rise time depends on the magnitudes of the roots s1 and s2. The root 

having the smallest magnitude dominates Eq. (10): for | s1 | << | s2 |, Eq. (10) is 

approximately equal to 

   vout(t) ≈ H 0u(t) 1 – es1t

 (11) 

This is indeed what happens when ζ >>1. Equation (11) can be expressed in terms of ω0 

and ζ as 

   
vout(t) ≈ H 0u(t) 1 – e–

ω0t
2ζ

 (12) 
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When ζ >> 1, the time constant 2ζ/ω0 is large and the response becomes quite slow. 

2.2. Critically damped case, ζ  = 1 

In this case, Eq. (4) reduces to 

   vout(s) =
H 0

s 1 + s
ω0

2

 (13) 

The partial fraction expansion of this equation is of the form 

   vout(s) =
K1

s +
K2

s + ω0
2

+
K3

s + ω0  (14) 

with the residues given by 

   K1 = H 0

K2 = s + ω0

2 H 0

s 1 + s
ω0

2

s = – ω0

= – ω0H 0

K3 = d
ds

s + ω0

2 H 0

s 1 + s
ω0

2

s = – ω0

= – H 0

 (15) 

The inverse transform is therefore 

   vout(t) = H 0u(t) 1 – 1 + ω0t e– ω0t

 (16) 

In the critically damped case, the time constant 1/ω0 is smaller than the slower time 

constant 2ζ/ω0 of the overdamped case. In consequence, the response is faster. This is 

the fastest response that contains no overshoot and ringing. 

2.3. Underdamped case, ζ  < 1 

The roots in this case are complex, as given by Eq. (6). The partial fraction expansion of 

Eq. (4) is of the form 

   
vout(s) =

K1

s
+

K2

s + ζω0 – jω0 1 – ζ 2
+

K 2
*

s + ζω0 + jω0 1 – ζ 2
 (17) 

The residues are computed as follows: 
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   K1 = H 0

K2 = s + ζω0 – jω0 1 – ζ 2 H 0ω0
2

s s + ζω0 – jω0 1 – ζ 2 s + ζω0 + jω0 1 – ζ2

s = – ζω0 +

jω0 1 – ζ 2

 (18) 

The expression for K2 can be simplified as follows: 

   
K2 =

H 0ω0
2

– ζω0 + jω0 1 – ζ 2 2jω0 1 – ζ 2

=
H 0

– ζ + j 1 – ζ2 2j 1 – ζ2

= –
H 0

2 1 – ζ 2 + j2ζ 1 – ζ 2

 (19) 

The magnitude of K2 is 

   K2 =
H 0

2 1 – ζ 2

 (20) 

and the phase of K2 is 

   
∠K2 = tan– 1 2ζ 1 – ζ2

2 1 – ζ 2

= tan– 1 ζ

1 – ζ 2

 (21) 

The inverse transform is therefore 

   

vout(t) = H 0u(t) 1 – 1
1 – ζ 2

e– ζω0t cos 1 – ζ 2 ω0t + tan– 1 ζ

1 – ζ2

 (22) 

In the underdamped case, the output voltage rises from zero to H0 faster than in the 

critically-damped and overdamped cases. Unfortunately, the output voltage then 

overshoots this value, and may ring for many cycles before settling down to the final 

steady-state value.  
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In some applications, a moderate amount of ringing and overshoot may be 

acceptable. In other applications, overshoot and ringing is completely unacceptable, and 

may result in destruction of some elements in the system. The engineer must use his or 

her judgment in deciding on the best value of ζ. 

3. Step response waveforms 

Equations (10), (16), and (19) were employed to plot the step response waveforms of 

Fig. 4. Underdamped, critically damped, and overdamped responses are shown. It can be 

deduced from Fig. 4 that the parameter ω0 scales the horizontal (time) axis, while H0 

scales the vertical (output voltage) axis. The damping factor ζ determines the shape of 

the waveform. 
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Fig. 4.  Second-order system step response, for various values of damping factor ζ. 

 

Three figures-of-merit for judging the step response are the rise time, the percent 

overshoot, and the settling time. Percent overshoot is zero for the overdamped and 

critically damped cases. For the underdamped case, percent overshoot is defined as 

   
percent overshoot =

peak vout – vout(∞)
vout(∞)

100%

 (20) 

One can set the derivative of Eq. (19) to zero, to find the maximum value of vout(t). One 

can then plug the result into Eq. (20), to evaluate the percent overshoot. Note that the 
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final (steady-

state) value of the 

output vout(∞) is 

H0. The following 

equation for the 

percent overshoot 

results: 

   percent overshoot = e– πζ / 1 – ζ2 100%

 (21) 

Again, this 

equation is valid 

only in the underdamped case, i.e., for 0 < ζ < 1. It can be seen from Fig. 4 that 

decreasing the damping factor ζ results in increased overshoot. The overshoot is 0% for 

ζ = 1. In the limit of ζ = 0 (the undamped case), the overshoot approaches 100%. 

As illustrated in Fig. 5, the rise time is defined as the time required for the output 

voltage to rise from 10% to 90% of its final steady-state value. When the system is 

underdamped, the output waveform may pass through 90% of its final value several 

times; the first pass is used in computation of the rise time. It can be seen from Fig. 4 

that the rise time increases monotonically with increasing ζ. 

The settling time is the time required by an underdamped system for its output 

voltage response to approach steady state and stay within some specified percentage (for 

example, 5%) of the final steady-state value. As can be seen from Fig. 4, systems having 

very small values of ζ have short rise times but long settling times. 

4. Experimental measurement of step response. 

The difficulty in measuring a transient 

response is that it happens only once 

—if you blink, you will miss it! This 

problem can be alleviated by causing 

the step input to be periodic: apply a 

square wave (Fig. 6) to the circuit 

input. The duration T/2 of the positive 

portion of the square wave is chosen 

to be much longer than the settling time of the output response, so that the circuit is in 

steady-state just before each step of the input waveform occurs. In consequence, the 

vout(t)

t

settling time

rise
time

overshoot

final
value
v( )

10%
of

v( )

90%

95%

105%

 
Fig. 5. Salient features of step response, second order system. 

tTT/20
0 V

1 V

vin(t)

 
Fig. 6. Use of a square wave input, with sufficiently 

long period T, allows the output transient to be 
observed on any oscilloscope. 
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output voltage waveform is identical to the waveform observed when a single step input 

is applied, except that the output transient occurs repetitively. The output transient 

waveform can now be easily observed on an oscilloscope, and can be studied in detail. 
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