1. (20 points) Use Ampère’s law and symmetry to find an expression for the magnetic field B of a tubular cylindrical conductor of inner radius a and outer radius b as shown below. The conductor is made of a material whose permittivity is μ; the other regions of space are air. The current I is assumed to be uniformly distributed between a and b, and to flow in the z direction.

2. (20 points) A time-independent but spatially-varying magnetic field $B(x) = u_x \frac{B_0 x}{d}$ exists in a certain region of space. A rectangular loop of conducting wire ranging from $x = vt$ to $x = a + vt$ and $z = 0$ to $z = b$ moves with a velocity v in this field as shown below.

The loop has a small gap, across which an induced voltage $V(t)$ appears. If the field amplitude is $B_0 = 0.1$ T, the length parameters are $d = 1$ cm, $a = 1$ cm, $b = 2$ cm and the velocity is $v = 0.1$ m/sec, evaluate this induced voltage.
3. (20 points) Find an expression for the resistance between two coaxial cylindrical electrodes of length l and radii a and b, separated by a conducting medium of resistivity ρ as shown below. The current flow is in the radial direction as indicated. If $a = 2 \text{ mm}$, $b = 4 \text{ mm}$ and $\rho = 3 \text{ }\Omega\text{m}$, how long must l be to achieve a resistance of 50 Ω?

![Diagram of coaxial cylindrical electrodes]

The following questions need little or no math:

4. (20 points) A capacitor of capacitance C, with a liquid dielectric of relative permittivity ϵ_r, is connected to an electrostatic source of voltage V. The voltage source is then disconnected from the capacitor, and after that the dielectric is drained from the capacitor. Determine the new voltage V_{new} between the capacitor electrodes when electrostatic equilibrium is reached.

5. (20 points) Two conducting wire loops are placed one above the other coaxially as shown below. A constant (DC) current I_1 flows in one of the loops. If the second loop moves vertically towards the first with a constant velocity v, which of the following is true (choose one answer from each column)? Give reasons for your answers.

![Diagram of two coaxial wire loops]

(i) A current I_2 flowing in the same direction as I_1 is induced in the second loop.

(ii) A current I_2 flowing in the opposite direction as I_1 is induced in the second loop.

(iii) No current is induced in the second loop.

(a) An attractive vertical force exists between the loops.

(b) A repulsive vertical force exists between the loops.

(c) A horizontal (sideways) force exists between the loops.

(d) No force exists between the loops.