In the voltage reference circuit of Figure 5, the device parameters are as follows:
\[\mu_n C_{ox} \approx 100 \mu A/V^2, V_m \approx 1V, \gamma \approx 0, \lambda_n \approx 0 \]
\[\mu_p C_{ox} \approx 50 \mu A/V^2, V_p \approx 1V, \gamma \approx 0, \lambda_p \approx 0 \]

Thermal Voltage:
\[V_T = 25.9 mV, \frac{\partial V_T}{\partial T} = 86 \mu V/°C \]

Emitter–base:
\[V_{eb} \approx 660 mV, \frac{\partial V_{eb}}{\partial T} = -2 mV/°C \]

Resistors:
\[TC(R) = \frac{\partial R}{R \partial T} = -1200 \text{ppm/°C} = -1.2 \cdot 10^{-3}/°C \]

The MOS device aspect ratios \(W/L \) in \(\mu m/\mu m \) and relative scale factors \(m \) for the bipolar devices are shown. The op-amp can be assumed to be ideal. Complete the following parts and show all work.

(a) Label the inverting and non-inverting inputs of the op-amp such that the bias circuit will operate properly.
(b) Write an expression for the bias current \(I_b \) in terms of the resistance \(R \) and process parameters. Solve for the resistance \(R \) that gives a bias current: \(I_b = 10 \mu A \).
(c) Write an expression for the output voltage \(V_o \) in terms of the resistive scale factor \(x \) and process parameters.
(d) Solve for the resistive scale factor \(x \) such that the temperature coefficient of the output voltage is approximately zero.

© 2004, R. Zane, University of Colorado at Boulder