Analog IC Design
ECEN 4827/5827
ECEE Department, University of Colorado Boulder

Course Vitals & Policies and Syllabus

Course Objective

In this class, students learn how to:
  • Analyze and construct complex CMOS analog circuits at the individual transistor level
  • Acquire intuition and insights into circuit operations and design techniques
  • Calculate large signal DC bias conditions and small signal characteristics and frequency responses of various analog building blocks and modules, including amplifiers and linear regulators
  • Analyze and design analog circuits with feedback
  • Gain inroductory knowledge and skills necessary to more advanced IC design courses such as ECEN 5837 - Mixed-Signal IC Design and ECEN 5847 - Integrated Circuits and Devices for Power Management ICs

Meeting times

    Vary by semester, please refer to your course schedule
    Class video captures are posted on Canvas Lecture Access.


It is the student's responsibility to check the course Canvas site often for updates to schedule, notes, assignments, due dates, etc.


    Lecture notes and supplementary materials are provided on the course Canvas site. No textbook is required. The following are recommended reference textbooks:

  • [Gray] P. Gray, P. Hurst, S. Lewis, R. Meyer, "Analysis and Design of Analog Integrated Circuits," 4th Edition,WILEY, 2001. This textbook is on reserve in the Engineering Library.
  • [Razavi] B. Razavi, "Design of Analog CMOS Integrated Circuits” McGraw-Hill Education, 2011.
  • [Allen] P. Allen, D. Holberg, "CMOS Analog Circuit Design, Second Edition," Oxford, 2002. An on-line version of this textbook is available from CU network. Off-campus students need to use CU VPN to access the CU on-line resources.
  • [Johns] D. Johns, K. Martin, "Analog Integrated Circuit Design," Wiley, 1997.
  • [Sedra] Sedra, Smith, "Microelectronics Circuits," Oxford. This textbook is used in ECEN3250.


Computer requirements

    LTspice IV is required. This is a free and unrestricted Spice simulator provided by and supported by Linear Technology (part of Analog Devices). LTspice is also available in the circuits (ECEE 281) and power (ECEE 1B65) labs

Grading and required work

  • All work must be submitted via Canvas.
  • Grading items include weekly HW assignments (total), one or more Midterm exams and a Final exam
  • Grading policy is announced on the course Canvas site
  • Extra-credit assignments are optional and granted case-by-case dependent on significant contribution to the class or assignments.

Course Policies


  • Homeworks: no late work accepted (unless otherwise announced by the instructor), except in cases of documented emergencies
  • Exams: no make-up or early exams, no late work will be accepted, except in cases of documented emergencies
  • The same deadlines apply to both on-campus and distance (off-campus) students


  • University of Colorado Boulder Honor Code applies to all students
  • Zero tolerance for cheating. At any level and in any form cheating will result in automatic failing grade F for all parties involved (giving and receiving), and will be reported to the CU Boulder Honor Code Council.
  • Homework: you are encouraged to collaborate with other students taking the course in this semester. However, each student must complete and turn in their own work. Copying someone else's work in any form, or collaborating in any form with anyone not taking the course in this semester is not allowed.
  • Exams: no collaboration of any kind is allowed, strictly follow the exam directions, no time extension
  • See the additional notices below, which generally apply to all CU students in all courses

Additional notices:

  • If you qualify for accommodations because of a disability, please submit to me a letter from Disability Services in a timely manner so that your needs may be addressed. Disability Services determines accommodations based on documented disabilities.
  • Every effort will be made to reasonably and fairly deal with students who have serious religious observances that conflict with scheduled exams, assignments, etc, accouding the the CU Boulder campus policy. Please notify the instructor well in advance, so that there is time to make adequate arrangements.
  • All students of the University of Colorado at Boulder are responsible for knowing and adhering to the academic integrity policy of this institution. Violations of this policy may include: cheating, plagiarism, aid of academic dishonesty, fabrication, lying, bribery, and threatening behavior. All incidents of academic misconduct shall be reported to the Honor Code Council ( Students who are found to be in violation of the academic integrity policy will be subject to both academic sanctions from the faculty member and non-academic sanctions (including but not limited to university probation, suspension, or expulsion).
  • The University of Colorado policy on Sexual Harassment and the University of Colorado policy on Amorous Relationships applies to all students, staff and faculty. Any student, staff or faculty member who believes s/he has been the subject of discrimination or harassment based upon race, color, national origin, sex, age, disability, religion, sexual orientation, or veteran status should contact the Office of Insititutional Equity and Compliance. Information about this office and the campus resources available to assist individuals regarding institutional equitey, discrimination or harassment can be obtained here.

ECEN4827/5827 Syllabus
  • Op-amp application circuits and op-amp characteristics
  • Transistor-level view of a two-stage op-amp 
    • Review of CMOS process technology and device characteristics
      -- processing, large-signal device equations, operating modes
    • Review of DC bias solution principles using the two-stage op-amp as an example
    • Review of the device small-signal models using the two-stage op-amp as an example
      basic gain stages: common-source, common-drain stages
      -- differential amplifier, active loading, half-circuit analysis, CMRR
      -- body effect
    • Basic principles of analog IC design
      -- Matching
      -- Process and temperature variations
  • Introduction to negative feedback circuits
    • Loop gain
  • Reference circuits and voltage regulators
    • Current and voltage references
    • Temperature and power supply sensitivity
    • Bandgap reference
    • Design of linear voltage regulators
  • Device high-frequency small-signal models & capacitances
    • Simplified BW and high-frequency analysis
      -- Zero-valued time constant (ZVTC) method for BW estimation
      -- n-extra element theorem (n-EET) for high frequency dynamics
    • BW limitations of basic gain stages: common-source and cascode amplifiers
    • Slew-rate and BW limitations of op-amps
  • Frequency-response and stability of feedback circuits
    • Phase and gain margins
    • Frequency compensation techniques
  • Examples of analysis and design of more advanced analog building blocks
    • Advanced op-amp design techniques
    • Fully differential amplifiers
      --common-mode feedback
    • Design of PWM controllers for swtiched-mode power converters