Open-loop differential-mode gain A_o

Given circuit diagram with labels:

- $R_B = 8.8 \text{ M}\Omega$
- $V_{DD} = 5 \text{ V}$
- $V_{SS} = -5 \text{ V}$
- $I_B = 1 \text{ \mu A}$
- $I_{D1} = 5 \text{ \mu A}$
- $I_{D2} = 5 \text{ \mu A}$
- $I_{B1} = 10 \text{ \mu A}$
- $I_{B2} = 100 \text{ \mu A}$

Transistor labels:

- M_1
- M_2
- M_3
- M_4
- M_5
- M_6
- M_7
- M_8

Width-to-length ratios:

- $(W/L)_{1,2} = 100$
- $(W/L)_{3,4} = 20$
- $(W/L)_5 = 10$
- $(W/L)_6 = 400$
- $(W/L)_7 = 100$
- $(W/L)_8 = 1$
Basic MOS small-signal model
Basic NMOS small-signal model

\[
g_m = \left. \frac{\partial i_D}{\partial v_{GS}} \right|_{V_{GS}, I_D} = 2K(V_{GS} - V_{tn}) = 2\sqrt{KI_D} = \frac{2I_D}{(V_{GS} - V_{tn})}
\]

\[
r_o = r_{ds} = \left. \left(\frac{\partial i_D}{\partial v_{DS}} \right)^{-1} \right|_{V_{GS}, I_D} = \frac{1}{\lambda I_D}
\]
Basic PMOS small-signal model

\[G \quad + \quad i_d \quad D \]

\[G \quad + \quad g_m v_{gs} \quad + \quad v_{ds} \]

\[G \quad - \quad r_o \quad - \quad v_{gs} \]

\[G \quad - \quad s \]

\[g_m = \frac{\partial i_D}{\partial v_{GS}} \bigg|_{v_{GS}, I_D} = 2K(V_{SG} - |V_{tp}|) = 2\sqrt{KI_D} \]

\[r_o = r_{ds} = \left(\frac{\partial i_D}{\partial v_{DS}} \right)^{-1} \bigg|_{V_{SG}, I_D} = \frac{1}{\lambda I_D} \]
Open-loop differential-mode gain A_o: A_2

$$+V_{DD} = 5 \text{ V}$$

$R_B = 8.8 \text{ M}\Omega$

$I_B = 1 \mu\text{A}$

$I_{D1} = 5 \mu\text{A}$

$I_{D2} = 5 \mu\text{A}$

$(W/L)_{3,4} = 20$

$(W/L)_{1,2} = 100$

$(W/L)_8 = 1$

$(W/L)_5 = 10$

$(W/L)_7 = 100$

$I_{B2} = 100 \mu\text{A}$

M_8

M_6

M_1

M_2

M_3

M_4

M_5

M_7
Open-loop differential-mode gain A_0: A_2
Open-loop differential-mode gain $A_o: A_1$

\[+V_{DD} = 5 \text{ V} \]

\[R_B = 8.8 \text{ M}\Omega \]

\[I_{B1} = 10 \mu\text{A} \]

\[I_{D1} = 5 \mu\text{A} \]

\[I_{D2} = 5 \mu\text{A} \]

\[M_1 \]

\[(W/L)_{1,2} = 100 \]

\[M_2 \]

\[(W/L)_{3,4} = 20 \]

\[M_3 \]

\[M_4 \]

\[(W/L)_5 = 10 \]

\[M_5 \]

\[(W/L)_6 = 400 \]

\[M_6 \]

\[(W/L)_7 = 100 \]

\[M_7 \]

\[(W/L)_8 = 1 \]

\[M_8 \]

\[I_{B2} = 100 \mu\text{A} \]

\[-V_{SS} = -5 \text{ V} \]
Basic differential amplifier

\[+V_{DD} = 5 \text{ V} \]

\[(W/L)_{1,2} = 100 \]

\[I_{B1} = 10 \mu\text{A} \]

\[-V_{SS} \]
Basic differential amplifier: half-circuit analysis

\[
M_1, M_2 (W/L)_{1,2} = 100
\]
Basic differential amplifier: half-circuit analysis

\[(W/L)_{1,2} = 100 \]
Basic differential amplifier: half-circuit analysis

\[\begin{align*}
\text{Input voltage:} & \quad -\frac{v_i}{2} \\
\text{Output voltage:} & \quad \frac{v_i}{2} \\
\text{M1, M2:} & \quad (W/L)_{1,2} = 100
\end{align*} \]
Open-loop differential-mode gain A_o: A_1

- $+V_{DD} = 5 \text{ V}$
- $-V_{SS} = -5 \text{ V}$
- $R_B = 8.8 \text{ M}\Omega$
- $I_B = 1 \mu\text{A}$
- $I_{D1} = 5 \mu\text{A}$
- $I_{D2} = 5 \mu\text{A}$
- $I_{B1} = 10 \mu\text{A}$
- $I_{B2} = 100 \mu\text{A}$
- $(W/L)_{3,4} = 20$
- $(W/L)_{1,2} = 100$
- $(W/L)_{5} = 10$
- $(W/L)_{6} = 400$
- $(W/L)_{7} = 100$

M_1, M_2, M_3, M_4, M_5, M_6, M_7, M_8
Open-loop differential-mode gain A_0: A_1

![Diagram of a circuit with transistors and resistors labeled with their W/L ratios and current values.]

- $R_B = 8.8 \, \text{M}\Omega$
- M_1 and M_2: $(W/L)_{1,2} = 100$
- M_3 and M_4: $(W/L)_{3,4} = 20$
- M_5, M_6, and M_7: $(W/L)_5 = 10$, $(W/L)_6 = 400$, $(W/L)_7 = 100$
- $I_{B1} = 10 \, \mu\text{A}$
- $-v_{id}/2$ and $+v_{id}/2$ sources
Open-loop differential-mode gain A_o

![Diagram of an open-loop differential amplifier with labeled components and gains.]

- $R_B = 8.8 \text{ M}\Omega$
- $I_{B1} = 10 \mu\text{A}$
- $(W/L)_8 = 1$
- $(W/L)_{1,2} = 100$
- $(W/L)_{3,4} = 20$
- $(W/L)_5 = 10$
- $(W/L)_6 = 400$
- $(W/L)_7 = 100$