Mismatch effects in Analog CMOS IC design

Matching is a key idea in analog IC design

- Absolute tolerances in device parameters are relatively large
- Identically sized devices on the same Silicon die:
 - Have (nearly) the same parameters
 - Operate at (nearly) the same temperature

Application examples studied so far:

- Distribution of bias currents using current mirrors
- Differential amplifiers
- Cancellation of temperature dependences

Next topic: effects of (small, random) mismatches in device parameters

- Input offset voltage in a differential amplifier with active load
- Current mirror mismatches
Random mismatches

Sources of random mismatch include:

- Edge effects (rough edges)
- Material imperfections
- Variations in mobility

Device mismatch parameters:

- MOSFET
 - Threshold voltage V_t,
 - Conductance parameter $K = (\mu C_\text{ox}/2)(W/L) = \beta/2$
 - Body effect parameter γ
- Resistors
 - ρ (resistivity)
- Capacitors
 - Oxide thickness variation
Threshold Voltage Mismatch

The threshold voltages among a group of transistors has a Gaussian profile about a mean. Experimentally, it has been shown that the difference in threshold voltages between 2 identically sized transistors behaves as:

$$\sigma_{\Delta V_t} = \frac{A_{V_t}}{\sqrt{WL}}$$

Note that to reduce the mismatch by \(\frac{1}{2} \) takes 4 times the area...

A fab will create test structures and measure \(\Delta V_t \) multiple times per wafer for various sizes of transistors and collect ongoing statistics to monitor the process over time.
The mismatch constant, A_{VT}, varies roughly linearly with process size. For p substrates, the PMOS has $A_{VT} \sim 1.5 * A_{VT}$ NMOS.
Conductance Parameter Mismatch

\[\frac{\sigma(\Delta \beta)}{\beta} = \frac{A_\beta}{\sqrt{WL}} \]

Typical \(A_\beta = 2\%\mu m \)

Application Example: Input Offset Voltage in a 2-stage CMOS op-amp
Input Offset Voltage in Differential Amplifier with Active (Current-Mirror) Load
Input Offset Voltage in Differential Amplifier with Active (Current-Mirror) Load
Current-Mirror Mismatch

\[\text{Current-Mirror Mismatch} \]

\[+V_{DD} \]

\[M_3 \quad M_4 \]

\[M_1 \quad M_2 \]

\[-V_{SS} \]
Current-Mirror Mismatch
Input Offset Voltage in Differential Amplifier with Active (Current-Mirror) Load
\(V_{OS} \) calculation example

Process parameters: \(A_{Vtrn} = 8 \text{ mV\mu m} \), \(A_{Vtp} = 12 \text{ mV\mu m} \), \(A_{\beta} = A_K = 2\% \mu m \)

\[
\sigma_{\Delta V_t} = \frac{A_{V_t}}{\sqrt{WL}} \quad \frac{\sigma(\Delta K)}{K} = \frac{\sigma(\Delta \beta)}{\beta} = \frac{A_{\beta}}{\sqrt{WL}}
\]
V_{OS} calculation example
Normal distribution

pdf
Input offset voltage analysis, example 2*

Analysis

1. Calculate ΔV_{gs} of input pair

2. Calculate $\Delta I_d/I_d$ of current mirror and reflect to input using g_m of input pair

3. Combine to find standard deviation of V_{OS}

Check using Spice Monte Carlo analysis

CAD tools: Cadence

*This example in 0.5 μm CMOS process was prepared by Art Zirger, National Semiconductor
DC operating point
Offset analysis: ΔV_{GS} of the NMOS diff pair

$W/L = 20\mu m/.5\mu m$, $A_{\nu t} = 16mV\mu m$

$g_{m_{M0/M1}} = 55.8\mu A/V$, $I_d = 2.5\mu A$, $A_\beta \sim 2\%\mu m$

$$\sigma(\Delta V_{gs}) = \sqrt{\left(\frac{\sigma(\Delta \beta)}{\beta} \frac{I_D}{g_m}\right)^2 + (\sigma(\Delta V_T))^2}$$

$$\sigma_{\Delta V_t} = \frac{A_{\nu t}}{\sqrt{WL}} = \frac{16mV\mu m}{\sqrt{20\mu m * 0.5\mu m}} = 5.06mV$$

$$\frac{\sigma(\Delta \beta)}{\beta} \frac{I_D}{g_m} = \frac{.02\mu m}{\sqrt{20\mu m * 0.5\mu m}} \cdot \frac{2.5\mu A}{55.8\mu A/V} = .28mV$$

$$\sigma(\Delta V_{gs}) = \sqrt{(.28mV)^2 + (5.06mV)^2} = 5.07mV$$
Offset analysis: ΔI_D of the PMOS mirror

\[
\frac{\sigma(\Delta I_D)}{I_D} = \sqrt{\left(\frac{\sigma(\Delta \beta)}{\beta} \right)^2 + \left(\frac{g_m \sigma(\Delta V_T)}{I_D} \right)^2} = \sqrt{\left(\frac{.02 \mu m}{\sqrt{2 \mu m \times 4 \mu m}} \right)^2 + \left(\frac{7.32 \mu A/ V}{2.5 \mu A / \sqrt{2 \mu m \times 4 \mu m}} \right)^2} = .025
\]

Effects on the input offset voltage:

\[
\sigma_{\Delta V_{gs}} = \left(\frac{\sigma(\Delta I_D)}{I_D} \right) \times I_D / g_{mN} = .025 \times 2.5 \mu A / 55.8 \mu A / V = 1.12 mV
\]
Input offset voltage

\[\sigma_{\Delta V_{gs_total}} = \sqrt{(5.07\, mV)^2 + (1.12\, mV)^2} = 5.19\, mV \]

Given a choice to add area to current mirrors or input pair, in this example, more to be gained by using the area for the input pair.
CAD Tools for Checking Effects of Tolerances or Mismatches

Spice “Monte Carlo” (.mc) analysis*

- Device models must include statistical parameters (distribution, mean, standard deviation)
- In Monte Carlo simulation, parameters of individual elements are selected randomly based on the statistical distribution specified in the device model
- It is necessary to perform a large number of simulations (100’s) to develop good statistics

In LTSpice, Monte Carlo simulations can be done using mc(x,y) function, which generates a random number between $x(1+y)$ and $x*(1-y)$ with uniform distribution

Models available for the 0.35u process do not include statistical parameters
Example: Monte Carlo analysis of the input offset voltage

1000 simulation runs

Result is a histogram of V_{OS} values, together with mean and standard deviation

Normal distribution