Dominant-pole compensation of the 2-stage CMOS op-amp

\[(W/L)_{1,2} = 100 \]
\[(W/L)_{3,4} = 20 \]
\[(W/L)_{5} = 10 \]
\[(W/L)_{7} = 100 \]

\[I_B = 1 \mu A \]
\[I_{B1} = 10 \mu A \]
\[I_{B2} = 100 \mu A \]

\[I_{D1} = 5 \mu A \]
\[I_{D2} = 5 \mu A \]
2-stage CMOS op-amp model: $A(s)$ including C_c and high-frequency dynamics
2-stage CMOS op-amp model: $A(s)$ including C_c and high-frequency dynamics
2-stage CMOS op-amp model: $A(s)$ including C_c and high-frequency dynamics
Unity-gain feedback circuit: $T(s) = A(s)$
Phase margin, f_c, high-frequency pole, and RHP zero
RHP Zero Cancellation

\[+V_{DD} = 5 \text{ V} \]

\[I_B = 1 \mu A \]

\[I_{D1} = 5 \mu A \]

\[I_{D2} = 5 \mu A \]

\[I_{B1} = 10 \mu A \]

\[I_{B2} = 100 \mu A \]

\[(W/L)_{3,4} = 20 \]

\[(W/L)_{1,2} = 100 \]

\[(W/L)_5 = 10 \]

\[(W/L)_7 = 100 \]

\[(W/L)_8 = 1 \]
RHP Zero Cancellation
RHP Zero Cancellation
RHP Zero Cancellation: Implementation

\[I_{D1} = 5 \, \mu A \]

\[I_{D2} = 5 \, \mu A \]

\(M_1 \)

\(M_2 \)

\(M_3 \)

\((W/L)_{3,4} = 20 \)

\((W/L)_{1,2} = 100 \)

\(I_{B1} = 10 \, \mu A \)

\(I_{B2} = 100 \, \mu A \)

\(I_B = 1 \, \mu A \)

\(+V_{DD} = 5 \, V \)

\(-V_{SS} = -5 \, V \)

\((W/L)_8 = 1 \)

\((W/L)_{5} = 10 \)

\((W/L)_{7} = 100 \)

\((W/L)_5 = 10 \)