A general analysis method for feedback circuits

\[V_e = V(+) - V(-) \]

Solve for closed-loop response

\[A_{cl} = \frac{V_o}{V_i} \]

\[V_e = V(+) - V(-) \quad \text{"error signal"} \]

\[V_o = (A V_e) \cdot G_3 = AG_3 V_e \]

\[V(+) = G_1 V_i \]

\[V(-) = G_2 V_o \]

\[V_o = AG_3 \left(G_1 V_i - G_2 V_o \right) \]

\[V_o \left(1 + AG_2 G_3 \right) = AG_1 G_3 V_i \]

\[A_{cl} = \frac{V_o}{V_i} = \frac{AG_1 G_3}{1 + AG_2 G_3} \]
Rearrange:

\[Acl = \frac{V_o}{V_i} = \frac{G_1}{G_2} \frac{A G_2 G_3}{1 + A G_2 G_3} \]

\[Acl = (Acl)_{ideal} \frac{T}{1 + T} \]

where

\[(Acl)_{ideal} = \frac{V_o}{V_i} \Bigg|_{T \to \infty} = \left(\frac{V_o}{V_i} \right) \Bigg|_{V_e = 0} = \frac{G_1}{G_2} \]

is the ideal closed-loop response when the error signal \(V_e \) is zero.

and \(T = A G_2 G_3 \) is the loop gain.

The general feedback circuit analysis:

1. Identify the feedback loop and the error \(V_e \) and verify that the feedback is negative.
2. Find \((Acl)_{ideal} = \frac{V_o}{V_i} \Bigg|_{V_e = 0} \) under the condition that the error is zero, i.e., under the condition that \(T \to \infty \).
3. Find \(T \).
4. \(Acl = (Acl)_{ideal} \frac{T}{1 + T} \).
\[T = \left. \frac{V_o}{V_x} \right|_{V_i = 0} = \frac{V_d}{V_x} \frac{V_e}{V(-)} \frac{V(-)}{V_0} \frac{V_0}{V_x} = \]

\[= (-A)(-1) G_2 G_3 = AG_2 G_3 \]

(1) null the input, \(V_i = 0 \)

(2) insert a test source \(V_{test} \) in series with feedback loop. A convenient point is the output of the amplifier \(A \)

(3) find \(T = \frac{V_d}{V_x} \)
Examples:

1. $v_e = v(+) - v(-)$

If $v_e = 0$, then $\frac{v_o}{v_i} = (Acl)\text{ideal} = -\frac{R_b}{R_a}$

Find the loop gain T:

$$T(s) = \frac{v_y}{v_x} = \frac{v_y}{v(-)} \frac{v(-)}{v_x} = A(s) \frac{R_a}{R_a + R_b}$$

So,

$$Acl(s) = -\frac{R_b}{R_a} \frac{A(s) \frac{R_a}{R_a + R_b}}{1 + A(s) \frac{R_a}{R_a + R_b}}$$
same as #1, except $R_{out} \neq 0$, and C_L is a capacitive load.

$$(A_{in})_{ideal} = \frac{V_o}{V_i} \bigg|_{V(+)=V(-)} = -\frac{R_b}{R_a}, \text{ same as in #1.}$$

Find $T(s)$

$$T(s) = \frac{V_o}{V_x} = \frac{V_x}{V(-)} \frac{V(-)}{V_o} \frac{V_o}{V_x}$$

$$= A(s) \frac{R_a}{R_a + R_b} \frac{1}{V_{CL}} \frac{1}{R_{out} + \frac{1}{V_{CL}}}$$

$$= \frac{1}{A(s)} \frac{R_a}{R_a + R_b} \frac{1}{1 + S C_L R_{out}}$$

if $R_b \gg R_{out}$

$$T(s) = A(s) \cdot \frac{R_a}{R_a + R_b} \cdot \frac{1}{1 + S C_L R_{out}}$$

$$\text{and} \quad A_{out}(s) = -\frac{R_b}{R_a} \frac{T(s)}{1 + T(s)}$$
\[(Au)_{\text{ideal}} = 1\]

Find \(T(s)\):

\[
T(s) = \frac{V_o}{V_x} \bigg| V_i = 0 = \frac{V_y}{V_x} \frac{V(+) - V(-)}{V(+)} \frac{V_o}{V_x} =
\]

\[
= (-A(s)) \left(\frac{1}{(1 + g_w R)} \right)
\]

\[
T(s) = g_w R A(s)
\]

\[
\frac{V_o}{V_i} = 1 - \frac{g_w R A(s)}{1 + g_w R A(s)}
\]
Effects of feedback on the frequency response

Consider the case when \(T(s) \) is a single-pole function and \((A_{cl})_{\text{ideal}}\) is a constant:

\[
(A_{cl})_{\text{ideal}} = \text{const.}
\]

\[
T(s) = \frac{T(0)}{1 + \frac{s}{\omega_p}}
\]

\[
A_{cl}(s) = (A_{cl})_{\text{ideal}} \frac{T(s)}{1 + T(s)} = \frac{T(0)}{1 + \frac{s}{\omega_p}}
\]

\[
A_{cl}(s) = (A_{cl})_{\text{ideal}} \frac{T(0)}{1 + T(0)} \frac{1}{1 + \frac{s}{\omega_p (1 + T(0))}}
\]

\[T(0) \gg 1, \]

\[
A_{cl}(s) \approx (A_{cl})_{\text{ideal}} \uparrow \text{low-freq. gain} \uparrow \text{CL pole frequency}
\]

\[
\text{Bandwidth is}
\]

\[
BW_{cl} = T(0) \omega_p = f_c = \text{"UNITY-GAIN FREQ. OF THE LOOP-GAIN"}
\]

\[= \text{"CROSS-OVER FREQUENCY"} \]
$f_c = T(0) f_p = \text{CROSS-OVER FREQUENCY}$

$\text{BW of the closed-loop application is}$

$\text{equal to the cross-over frequency of the}\$

loop gain.

Examples of finding closed-loop BW:

- noninverting amplifier
- inverting amplifier
- voltage regulator
Single-pole \(T(s) = \frac{T(0)}{1 + \frac{s}{\omega_p}} \),

\[T(0) \omega_p = f_c = \text{"cross-over frequency"} \]

= unity-gain frequency of the loop gain

\[|T(j\omega_c)| = 1 \]

Magnitude and phase response of the loop-gain:

\[20 \log |T(j\omega)| \]

\[\phi T(j\omega) \]

\[-90^\circ \]

\[-180^\circ \]

achal response with HF poles and zeros

actual response with HF poles and zeros

\[\phi T(j\omega) = -180^\circ = \text{positive feedback at this frequency!} \]

\[|T(j\omega)| > 1 \rightarrow \text{oscillations at } f_x \text{ grow, INSTABILITY} \]

\[|T(j\omega)| < 1 \rightarrow \text{oscillations decay, STABILITY} \]
$|T(j\omega)| = 1$

PM = $\gamma_M = \text{phase margin}$

$= 180^\circ + \angle T(j\omega_c)$

$\gamma_\text{M} > 0 \implies \text{STABLE}$

$\gamma_\text{M} < 0 \implies \text{UNSTABLE}$

STABILITY TEST
FINDING PHASE MARGIN $\varphi_M = PM$

1. Find loop gain $T(s)$

2. Find cross-over frequency $f_c = \text{unity gain frequency of the loop gain}$,

 \[|T(j\omega_c)| = 1 \quad \text{or} \quad 20 \log |T(j\omega_c)| = 0 \]

3. $\varphi_M = PM = 180^\circ + \angle T(j\omega_c)$

Step (2) is greatly simplified if straight-line approximations to $20 \log |T(j\omega)|$ are used instead of the exact magnitude response.

Example

Consider a 2-pole $T(s)$,

\[T(s) = \frac{T(0)}{(1 + \frac{s}{\omega_p1})(1 + \frac{s}{\omega_p2})} \]

There are 2 cases:

1 $f_{p2} > T(0) f_{p1}$

2 $f_{p2} < T(0) f_{p1}$

The Bode plots of the magnitude response of the loop gain for the two cases are:
\[
\begin{align*}
20 \log |T(j \omega_c)| &= 20 \log |T(0)| - 20 \log \sqrt{1 + \left(\frac{\omega_c}{\omega_{p1}}\right)^2} - \\
&\quad - 20 \log \sqrt{1 + \left(\frac{\omega_c}{\omega_{p2}}\right)^2} = 0
\end{align*}
\]

\[
20 \log |T(j \omega_c)| \approx 20 \log |T(0)| - 20 \log \frac{\omega_c}{\omega_{p1}} = 0
\]

\[
\Rightarrow \quad f_c \approx T(0) f_{p1}
\]

\[
\Phi_M = \phi_M = 180 - \arctg \frac{f_c}{f_{p1}} - \arctg \frac{f_c}{f_{p2}}
\]

\[
= 180 - \arctg \left(\frac{T(0)}{f_{p1}}\right) - \arctg \frac{T(0) f_{p1}}{f_{p2}}
\]

\[
\approx 90^\circ \quad \text{if} \quad T(0) \gg 1
\]

\[
\Phi_M = \phi_M \approx 90^\circ - \arctg \frac{T(0) f_{p1}}{f_{p2}}
\]

\[
i_f \quad T(0) f_{p1} < f_{p2}
\]
\[\begin{align*}
20 \log |T(j\omega)| & \approx 20 \log |T(0)| - 20 \log \frac{f_{p2}}{f_{p1}} - 40 \log \frac{f_c}{f_{p2}} = 0 \\
T(0) &= \frac{f_{p2}}{f_{p1}}\\
T(0) &\approx \frac{f_{p2}}{f_{p1}} \cdot \frac{f_c^2}{f_{p2}} \\
&\Rightarrow f_c \approx \sqrt{T(0)f_{p1}f_{p2}} \\
PM = \gamma_M &\approx 180 - \arctg \frac{f_c}{f_{p1}} - \arctg \frac{f_c}{f_{p2}} \\
&= 180 - \arctg \sqrt{\frac{T(0)f_{p2}}{f_{p1}}} - \arctg \sqrt{\frac{T(0)f_{p1}}{f_{p2}}} \\
PM = \gamma_M &\approx 90^\circ - \arctg \sqrt{\frac{T(0)f_{p1}}{f_{p2}}} \\
&\text{if } T(0)f_{p1} > f_{p2}
\end{align*} \]
The results in case #1 are the same for $T(s)$ with arbitrary # of poles/zeros, as long as $T(0)f_{p1} < \text{frequencies of all other poles and zeros}$.

For $T(s) = T(0) \frac{(1 + \frac{s}{\omega_{p1}})(1 + \frac{s}{\omega_{p2}}) \ldots}{(1 + \frac{s}{\omega_{m}})(1 + \frac{s}{\omega_{m}}) \ldots}$

$PM = \gamma_m = 180^\circ - \arctg \frac{f_c}{f_{p1}} - \arctg \frac{f_c}{f_{p2}} - \ldots \ (\text{poles})$

$+ \arctg \frac{f_c}{f_{z1}} + \arctg \frac{f_c}{f_{z2}} + \ldots \ (\text{zeros})$

General PM calculation for a given $T(s)$ with cross-over frequency f_c.

Notes:
How much Phase Margin is Needed?

Link between $PM = PM$ and the closed-loop responses. See Text pages 236-239.

Step response of a closed-loop application:

1. $PM < \varnothing$: instability, oscillations continue forever
2. $0 < PM < 76^\circ$: stable response with overshoot of $p\%$, and oscillations that decay in time
3. $PM > 76^\circ$: stable response with no overshoot

See Table 5.1 in the Text:

<table>
<thead>
<tr>
<th>PM</th>
<th>$p%$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq \varnothing$</td>
<td>100%</td>
</tr>
<tr>
<td>45°</td>
<td>16%</td>
</tr>
<tr>
<td>55°</td>
<td>13%</td>
</tr>
<tr>
<td>60°</td>
<td>9%</td>
</tr>
<tr>
<td>65°</td>
<td>5%</td>
</tr>
<tr>
<td>70°</td>
<td>1%</td>
</tr>
<tr>
<td>$>76^\circ$</td>
<td>0%</td>
</tr>
</tbody>
</table>
Techniques for shaping $T(s)$ so that

PM \geq minimum specified value, i.e.,

(45°, 60°, 75°, depending on the application)

f_c as high as possible
(because $(BW)_{CL} \approx \frac{1}{f_c}$)

Standard, dominant-pole op-amp compensation

Use C_c large enough so that

$A(0) f_{p1} < \text{high-frequency poles and zeros.}$

Recall: $A(0) = \frac{g_m R_1 g_m R_2}{1 + \frac{g_m R_1 R_2 C_c}{2 \pi}}$

$\frac{1}{f_{p1}} = \frac{1}{2 \pi g_m R_1 R_2 C_c}$

$A(0) f_{p1} = f_{na} = GBW = \frac{g_m}{2 \pi C_c}$

Condition ⚫ guarantees $PM > 45°$ in all closed-loop applications with resistive feedback, including $\overline{V_i} \rightarrow \overline{V_o}$ where $T(s) = A(s)$.
In this part of the notes, we summarize the notation and the main results related to effects of feedback on the frequency response, including: gain-bandwidth trade-offs, stability limits, and compensation techniques.

<table>
<thead>
<tr>
<th>SYMBOL(S)</th>
<th>DEFINITION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>w_{-3dB}, w_{BW}</td>
<td>$</td>
<td>A(jw_{BW})</td>
</tr>
<tr>
<td>BW, f_{-3dB}, f_{BW}</td>
<td>$BW = \frac{w_{BW}}{2\pi}$</td>
<td>Bandwidth in Hz.</td>
</tr>
<tr>
<td>$A(s), A_{OL}(s)$</td>
<td>$A(s) = \frac{v}{v(+) - v(-)}$</td>
<td>Op-amp open-loop transfer function, or transfer function of any amplifier.</td>
</tr>
<tr>
<td>$A(jw), A_{OL}(jw)$</td>
<td>$A(jw) = A(s)</td>
<td>_{s \rightarrow jw}$</td>
</tr>
<tr>
<td>$A(0), A_{OL}(0), A_{o}$</td>
<td>$A(0) = A(jw)</td>
<td>_{w=0}$</td>
</tr>
<tr>
<td>$20 \log</td>
<td>A(jw)</td>
<td>$</td>
</tr>
<tr>
<td>f_{p1}, f_{1}</td>
<td></td>
<td>Frequency of the low-frequency pole, dominant-pole frequency.</td>
</tr>
<tr>
<td>f_{u}</td>
<td>$</td>
<td>A(jwf_{u})</td>
</tr>
<tr>
<td>GBW</td>
<td>$GBW = f_{u}$</td>
<td>Op-amp gain-bandwidth product, equal to the op-amp unity-gain frequency.</td>
</tr>
<tr>
<td>SR</td>
<td>$SR = \frac{</td>
<td>dv_o}{dt}</td>
</tr>
</tbody>
</table>

© 1998 Dragan Maksimović
Department of Electrical and Computer Engineering
University of Colorado, Boulder
<table>
<thead>
<tr>
<th>SYMBOL(S)</th>
<th>DEFINITION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(s)$, LG</td>
<td>$T(s) = \frac{v_o}{v_r}</td>
<td>_{i=0}$</td>
</tr>
<tr>
<td>$T(jw)$</td>
<td>$T(jw) = T(s)</td>
<td>_{s\rightarrow jw}$</td>
</tr>
<tr>
<td>$T(0)$</td>
<td>$T(0) = T(jw)</td>
<td>_{w=0}$</td>
</tr>
<tr>
<td>$20 \log</td>
<td>T(jw)</td>
<td>$</td>
</tr>
<tr>
<td>$< T(jw)$</td>
<td>$< T(jw) = \arctan \frac{\text{Im}(T(jw))}{\text{Re}(T(jw))}$</td>
<td>Loop gain phase response.</td>
</tr>
<tr>
<td>f_c, f_t</td>
<td>$</td>
<td>T(jw_c)</td>
</tr>
<tr>
<td>PM, φ_M, ϕ_M</td>
<td>PM = $180^\circ + < T(jw_c)$</td>
<td>Phase margin (of the loop gain $T(jw)$).</td>
</tr>
<tr>
<td>$A_{CL}(s)$</td>
<td>Closed-loop transfer function of a feedback circuit application.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A_{CL}(s) = (A_{CL})_{\text{ideal}} \left{ \frac{T(s)}{1+T(s)} \right}$</td>
<td></td>
</tr>
<tr>
<td>$(A_{CL})_{\text{ideal}}$</td>
<td>$(A_{CL}){\text{ideal}} = A{CL}(s)</td>
<td>_{T\rightarrow \infty}$</td>
</tr>
<tr>
<td>$A_{CL}(jw)$</td>
<td>$A_{CL}(jw) = A_{CL}(s)</td>
<td>_{s\rightarrow jw}$</td>
</tr>
<tr>
<td>$A_{CL}(0)$</td>
<td>$A_{CL}(0) = A_{CL}(jw)</td>
<td>_{w=0}$</td>
</tr>
<tr>
<td>$20 \log</td>
<td>A_{CL}(jw)</td>
<td>$</td>
</tr>
<tr>
<td>$(BW)_{CL}$, BW</td>
<td></td>
<td>Closed-loop bandwidth in Hz of a feedback circuit. $(BW)_{CL} \approx f_c$, for a feedback circuit with large phase margin PM (for PM > 45°).</td>
</tr>
</tbody>
</table>