ECEN 5645
Introduction to Optoelectronics
Class Meeting 6

AR Coating, Bragg
Reflection and Complex Refractive Index
Today’s Topics:
Examples on

- Penetration Depth
- AR coating
- Bragg Reflection
- Complex Refractive Index
 - Reflectance
 - Example: Cd Te
Figure 1: Illustration of the geometric relationships between the field vectors and propagation directions in the Fresnel problem for (a) the TE case and (b) the TM case.
Fresnel's Equations

\[
\begin{align*}
r_\perp &= \frac{E_{r0,\perp}}{E_{i0,\perp}} = \frac{\cos \theta_i - \left[n^2 - \sin^2 \theta_i \right]^{1/2}}{\cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}} \\
r_{\parallel} &= \frac{E_{r0,\parallel}}{E_{i0,\parallel}} = \frac{\left[n^2 - \sin^2 \theta_i \right]^{1/2} - n^2 \cos \theta_i}{\left[n^2 - \sin^2 \theta_i \right]^{1/2} + n^2 \cos \theta_i} \\
t_\perp &= \frac{E_{t0,\perp}}{E_{i0,\perp}} = \frac{2 \cos \theta_i}{\cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}} \\
t_{\parallel} &= \frac{E_{t0,\parallel}}{E_{i0,\parallel}} = \frac{2n \cos \theta_i}{n^2 \cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}}
\end{align*}
\]
Important Fresnel Phenomena

- Brewster’s Effect – no reflected wave for the TM polarization
- Total Internal Reflection – when second medium is more dense – absence of transmission
Fresnel's Equations

\[
\begin{align*}
 r_\perp &= \frac{E_{r0,\perp}}{E_{i0,\perp}} = \frac{\cos \theta_i - \left[n^2 - \sin^2 \theta_i \right]^{1/2}}{\cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}} \\
 r_\parallel &= \frac{E_{r0,\parallel}}{E_{i0,\parallel}} = \frac{\left[n^2 - \sin^2 \theta_i \right]^{1/2} - n^2 \cos \theta_i}{\left[n^2 - \sin^2 \theta_i \right]^{1/2} + n^2 \cos \theta_i} \\
 t_\perp &= \frac{E_{t0,\perp}}{E_{i0,\perp}} = \frac{2 \cos \theta_i}{\cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}} \\
 t_\parallel &= \frac{E_{t0,\parallel}}{E_{i0,\parallel}} = \frac{2n \cos \theta_i}{n^2 \cos \theta_i + \left[n^2 - \sin^2 \theta_i \right]^{1/2}}
\end{align*}
\]
Phase Shift and Penetration Depth

- TIR is used for waveguides
- TIR can be used polarization devices where the difference between phase shifts will alter reflected polarization state
- TIR is used in couplers where penetration is important
- Penetration into cladding determines loss and dispersion in propagation
Example: Reflection of light from a less dense medium (internal reflection)

A ray of light which is traveling in a glass medium of refractive index $n_1 = 1.460$ becomes incident on a less dense glass medium of refractive index $n_2 = 1.440$. The free space wavelength (λ) of the light ray is 1300 nm.

(a) What should be the minimum incidence angle for TIR?
(b) What is the phase change in the reflected wave when $\theta_i = 87^\circ$ and when $\theta_i = 90^\circ$?
(c) What is the penetration depth of the evanescent wave into medium 2 when $\theta_i = 87^\circ$ and when $\theta_i = 90^\circ$?
Solution

(a) The critical angle θ_c for TIR is given by

$$\sin \theta_c = n_2/n_1 = 1.440/1.460 \text{ so that } \theta_c = 80.51^\circ$$

(b) Since the incidence angle $\theta_i > \theta_c$ there is a phase shift in the reflected wave. The phase change in $E_{r,\perp}$ is given by ϕ_\perp.

Using $n_1 = 1.460$, $n_2 = 1.440$ and $\theta_i = 87^\circ$,
\[\tan\left(\frac{1}{2} \phi_\perp\right) = \frac{\sin^2 \theta_i - n^2}{\cos \theta_i} = \frac{\sin^2 (87^\circ) - \left(\frac{1.440}{1.460}\right)^2}{\cos (87^\circ)} \]

\[= 2.989 = \tan\left[\frac{1}{2}(143.0^\circ)\right] \]

so that the phase change \(\phi_\perp = 143^\circ \).

For the \(E_{r,\parallel} \) component, the phase change is

\[\tan\left(\frac{1}{2} \phi_\parallel + \frac{1}{2} \pi\right) = \frac{\sin^2 \theta_i - n^2}{n^2 \cos \theta_i} = \frac{1}{n^2} \tan\left(\frac{1}{2} \phi_\perp\right) \]
so that

\[\tan\left(\frac{1}{2}\phi_\parallel + \frac{1}{2}\pi\right) = \left(\frac{n_1}{n_2}\right)^2 \tan\left(\frac{\phi_\perp}{2}\right) = \]

\[(1.460/1.440)^2 \tan\left(\frac{1}{2}143^\circ\right) \]

which gives \(\phi_\parallel = 143.95^\circ - 180^\circ \) or \(-36.05^\circ\)

Repeat with \(\theta_i = 90^\circ \) to find \(\phi_\perp = 180^\circ \) and \(\phi_\parallel = 0^\circ \).

Note that as long as \(\theta_i > \theta_c \), the magnitude of the reflection coefficients are unity. Only the phase changes.
(c) The amplitude of the evanescent wave as it penetrates into medium 2 is

\[E_{t,\perp}(y,t) \propto E_{to,\perp} \exp(-\alpha_2 y) \]

The field strength drops to \(e^{-1} \) when \(y = 1/\alpha_2 = \delta \), which is called the penetration depth. The attenuation constant \(\alpha_2 \) is

\[\alpha_2 = \frac{2\pi n_2}{\lambda} \left[\left(\frac{n_1}{n_2} \right)^2 \sin^2 \theta_i - 1 \right]^{1/2} \]
\[
\alpha_2 = \frac{2\pi (1.440)}{(1300 \times 10^{-9} \text{ m})}\left[(\frac{1.460}{1.440})^2 \sin^2 (87^\circ) - 1\right]^{1/2}
\]

\[= 1.10 \times 10^6 \text{ m}^{-1}.\]

The penetration depth is,
\[\delta = \frac{1}{\alpha_2} = \frac{1}{(1.104 \times 10^6 \text{ m})} = 9.06 \times 10^{-7} \text{ m}, \text{ or } 0.906 \mu\text{m}\]

For 90°, repeating the calculation, \(\alpha_2 = 1.164 \times 10^6 \text{ m}^{-1}\), so that
\[\delta = \frac{1}{\alpha_2} = 0.859 \mu\text{m}\]

The penetration is greater for smaller incidence angles
Anti-Reflection Coatings

- Thin film coatings can be used to alter reflection and transmission properties by specifying thickness and index.
- Thicknesses are order of a fraction of a wavelength.
- High index contrast leads to wide bandwidth.
- Thin is relative – plasmonics and nano-optics are based on much thinner coatings.
Example: Antireflection coatings on solar cells

When light is incident on the surface of a semiconductor it becomes partially reflected. Partial reflection is an important energy loss in solar cells.

The refractive index of Si is about 3.5 at wavelengths around 700 - 800 nm. Reflectance with $n_1(\text{air}) = 1$ and $n_2(\text{Si}) \approx 3.5$ is

$$R = \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 = \left(\frac{1 - 3.5}{1 + 3.5} \right)^2 = 0.309$$
30% of the light is reflected and is not available for conversion to electrical energy; a considerable reduction in the efficiency of the solar cell.

Illustration of how an antireflection coating reduces the reflected light intensity.
We can coat the surface of the semiconductor device with a thin layer of a dielectric material, *e.g.* Si$_3$N$_4$ (silicon nitride) that has an intermediate refractive index.

\[n_1(\text{air}) = 1, \quad n_2(\text{coating}) \approx 1.9 \quad \text{and} \quad n_3(\text{Si}) = 3.5 \]

Light is first incident on the air/coating surface. Some of it becomes reflected as A in the figure. Wave A has experienced a 180° phase change on reflection because this is an external reflection. The wave that enters and travels in the coating then becomes reflected at the coating/semiconductor surface.
This reflected wave B, also suffers a 180° phase change since $n_3 > n_2$.

When B reaches A, it has suffered a total delay of traversing the thickness d of the coating twice. The phase difference is equivalent to $k_c(2d)$ where $k_c = 2\pi / \lambda_c$ is the propagation constant in the coating, i.e. $k_c = 2\pi / \lambda_c$ where λ_c is the wavelength in the coating.

Since $\lambda_c = \lambda / n_2$, where λ is the free-space wavelength, the phase difference $\Delta \phi$ between A and B is $(2\pi n_2 / \lambda)(2d)$. To reduce the reflected light, A and B must interfere destructively. This requires the phase difference to be π or odd-multiples of π, $m\pi$ where $m = 1, 3, 5, \ldots$ is an odd-integer. Thus
\[
\left(\frac{2\pi n_2}{\lambda}\right) 2d = m\pi
\]

or

\[
d = m\left(\frac{\lambda}{4n_2}\right)
\]

The thickness of the coating must be **odd-multiples** of the quarter wavelength in the coating and depends on the wavelength.

\[
R_{\text{min}} = \left(\frac{n_2^2 - n_1 n_3}{n_2^2 + n_1 n_3}\right)^2
\]
To obtain good destructive interference between waves A and B, the two amplitudes must be comparable. We need (proved later) $n_2 = \sqrt{n_1 n_3}$. When $n_2 = \sqrt{n_1 n_3}$ then the reflection coefficient between the air and coating is equal to that between the coating and the semiconductor. For a Si solar cell, $\sqrt{3.5}$ or 1.87. Thus, Si$_3$N$_4$ is a good choice as an antireflection coating material on Si solar cells.

Taking the wavelength to be 700 nm,

$$d = m \left(\frac{\lambda}{4n_2} \right)$$

where d is the thickness of the coating, λ is the wavelength, m is an integer, and n_2 is the refractive index of the coating. For a wavelength of 700 nm and a refractive index of 1.9,

$$d = \frac{700 \text{ nm}}{4 \times 1.9} = 92.1 \text{ nm} \text{ or odd-multiples of } d.$$
\[R_{\text{min}} = \left(\frac{n_2^2 - n_1 n_3}{n_2^2 + n_1 n_3} \right)^2 \]

\[R_{\text{min}} = \left(\frac{1.9^2 - (1)(3.5)}{1.9^2 + (1)(3.5)} \right)^2 = 0.00024 \text{ or } 0.24\% \]

Reflection is almost entirely extinguished
However, only at 700 nm.
Problem Set 2 Problem 1 (1.10 Kasap)

- Solution by Evolene Premillieu
Problem 1.10 : Refractive index, reflection, and the Brewster’s angle

Light of $\lambda_0=1300$ nm traveling in pure Silica medium.

I used Figure 1.8 : Refractive index n and the group index N_g of pure Silica SiO_2 (glass) as a function of wavelength.

$n=1.4457 \quad N_g=1.462$ and the velocity of light $c=3.10^8 \text{ m.s}^{-1}$

The phase velocity is given by : $v=\frac{c}{n}=2.075.108 \text{ m/s}$
The group velocity is given by : $v_g=\frac{c}{N_g}=2.052.108 \text{ m/s}$

As $N_g > n$, the group velocity is smaller than the phase velocity.

Light traveling in Silica is incident on a Silica-air interface :

Brewster’s angle is given by :

$$\tan \theta_p = n_2/n_1 \quad \theta_p=34.67^\circ$$

Critical angle for Total Internal Reflection is given by :

$$\sin \theta_c = n_2/n_1 \quad \theta_c=43.76^\circ$$

At the polarization angle the light is linearly polarized as the electric field oscillations are contained within a well-defined plane, perpendicular to the plane of incidence and the direction of propagation.

Light beam traveling in Silica, incident at normal incidence on a Silica-air interface :

Reflection coefficient : $r=n_1-n_2/n_1+n_2 =0.1822$ \hspace{1cm} Reflectance : $R=r^2=0.0332$ or 3.32%

Light beam traveling in Silica, incident at normal incidence on an air-Silica interface :

Reflection coefficient : $r=n_1-n_2/n_1+n_2 = -0.1822$ \hspace{1cm} Reflectance : $R=r^2=0.0332$ or 3.32% => there is a π phase shift.
Bragg Reflectors

• AR coatings are designed such that reflections from successive layers cancel

• Reflective coatings are designed such that reflections from successive layers constructively interfere

• A high low reflective structure will require a different design procedure than a low high

• Each layer of a Bragg reflector is lossless, that is, the overall loss is zero, that is, \(R + T = 1 \)
Dielectric Mirror or Bragg Reflector

Schematic illustration of the principle of the dielectric mirror with many low and high refractive index layers

\[n_0 \rightarrow n_1 \rightarrow n_2 \rightarrow n_1 \rightarrow n_2 \rightarrow \text{Substrate} \]

\[N = 1 \rightarrow N = 2 \]
Dielectric mirrors

Schematic illustration of the principle of the dielectric mirror with many low and high refractive index layers
A **dielectric mirror** has a stack of dielectric layers of alternating refractive indices. Let $n_1 (= n_H) > n_2 (= n_L)$

Layer thickness $d = \text{Quarter of wavelength or } \lambda_{\text{layer}}/4$

$\lambda_{\text{layer}} = \lambda_o/n$; λ_o is the free space wavelength at which the mirror is required to reflect the incident light, $n = \text{refractive index of layer}$.

Reflected waves from the interfaces interfere constructively and give rise to a substantial reflected light. If there are sufficient number of layers, the reflectance can approach unity at λ_o.
r_{12} for light in layer 1 being reflected at the 1-2 boundary is

$$r_{12} = \frac{n_1 - n_2}{n_1 + n_2}$$

and is a positive number indicating no phase change.

r_{21} for light in layer 2 being reflected at the 2-1 boundary is

$$r_{21} = \frac{n_2 - n_1}{n_2 + n_1}$$

which is $-r_{12}$ (negative) indicating a π phase change.

The reflection coefficient alternates in sign through the mirror.

The phase difference between A and B is

$$0 + \pi + 2k_1d_1 = 0 + \pi + 2(2\pi n_1/\lambda_0)(\lambda_0/4n_1) = 2\pi.$$

Thus, waves A and B are in phase and interfere constructively.

Dielectric mirrors are widely used in modern vertical cavity surface emitting semiconductor lasers.
Dielectric Mirror or Bragg Reflector

Δλ = Reflectance bandwidth (Stop-band for transmittance)
Consider an “infinite stack”
For reflection, the phase difference between \(A \) and \(B \) must be

\[
2k_1d_1 + 2k_2d_2 = m(2\pi)
\]

\[
2(2\pi n_1/\lambda)d_1 + 2(2\pi n_2/\lambda)d_2 = m(2\pi)
\]

\[
n_1d_1 + n_2d_2 = \frac{m\lambda}{2}
\]
Dielectric Mirror or Bragg Reflector

\[n_1 d_1 + n_2 d_2 = \lambda / 2 \]

\[d_1 = \lambda / 4 n_1 \]

\[d_2 = \lambda / 4 n_2 \]

Quarter-Wave Stack

\[d_1 = \lambda / 4 n_1 \text{ and } d_2 = \lambda / 4 n_2 \]
Dielectric Mirror or Bragg Reflector

\[R_N = \left[\frac{n_1^{2N} - (n_0 / n_3)n_2^{2N}}{n_1^{2N} + (n_0 / n_3)n_2^{2N}} \right]^2 \]

\[\frac{\Delta \lambda}{\lambda_o} \approx \frac{4}{\pi} \arcsin \left(\frac{n_1 - n_2}{n_1 + n_2} \right) \]
Problem Set 2 Problem 2 (1.14 Kasap)

- Solution by Fermat - to be presented by Jeremy Shugrue
Complex Refractive Index

\[\alpha = -\frac{dI}{Idz} \]
Complex Index

- Materials are made of atoms
- Electrons in atoms, bonds between atoms, molecular bonds have stationary states
- Transitions to higher states eventually decay and lead to absorption bands
- Absorption appears as an imaginary part of the dielectric constant
- Kramer’s Kronig gives the real part of any causal function in terms of the imaginary
Complex Refractive Index

Consider $k = k' - jk''$

$$E = E_o \exp(-k''z) \exp(j(\omega t - k' z))$$

$$I \propto |E|^2 \propto \exp(-2k''z)$$

We know from EM wave theory

$$\varepsilon_r = \varepsilon_r' - j\varepsilon_r'' \quad \text{and} \quad N = \varepsilon_r^{1/2}$$

$$N = n - jK = k/k_o = (1/k_o)[k' - jk'']$$

$$N = n - jK = \sqrt{\varepsilon_r} = \sqrt{\varepsilon_r' - j\varepsilon_r''}$$
Reflectance

\[\varepsilon_r = \varepsilon_r' - j \varepsilon_r'' \]
and
\[N = \varepsilon_r^{1/2} \]
\[N = n - jK \]
\[n^2 - K^2 = \varepsilon_r' \]
and
\[2nK = \varepsilon_r'' \]

\[R = \left| \frac{n - jK - 1}{n - jK + 1} \right|^2 = \frac{(n - 1)^2 + K^2}{(n + 1)^2 + K^2} \]
CdTe is used in various applications such as lenses, wedges, prisms, beam splitters, antireflection coatings, windows *etc* operating typically in the infrared region up to 25 µm. It is used as an optical material for low power CO$_2$ laser applications.
Complex Refractive Index

\[N = n - jK = \sqrt{\varepsilon_r} = \sqrt{\varepsilon'_r - j\varepsilon''_r} \]

\[n^2 - K^2 = \varepsilon'_r \quad \text{and} \quad 2nK = \varepsilon''_r \]

\[R = \frac{(n - jK - 1)^2}{(n - jK + 1)} = \frac{(n - 1)^2 + K^2}{(n + 1)^2 + K^2} \]

88 µm
Example: Complex Refractive Index for CdTe

Calculate the absorption coefficient α and the reflectance R of CdTe at the Reststrahlen peak, and also at 50 µm. What is your conclusion?

Solution: At the Reststrahlen peak, $\lambda \approx 70$ µm, $K \approx 6$, and $n \approx 4$. The free-space propagation constant is

$$k_0 = \frac{2\pi}{\lambda} = \frac{2\pi}{(70 \times 10^{-6} \text{ m})} = 9.0 \times 10^4 \text{ m}^{-1}$$

The absorption coefficient α is $2k$,

$$\alpha = 2k'' = 2k_0 K = 2(9.0 \times 10^4 \text{ m}^{-1})(6) = 1.08 \times 10^6 \text{ m}^{-1}$$

which corresponds to an absorption depth $1/\alpha$ of about 0.93 micron.
Solution continued: At the Reststrahlen peak, $\lambda \approx 70 \ \mu m$, $K \approx 6$, and $n \approx 4$, so that

$$R = \frac{(n-1)^2 + K^2}{(n+1)^2 + K^2} = \frac{(4-1)^2 + 6^2}{(4+1)^2 + 6^2} \approx 0.74 \text{ or } 74\%$$

At $\lambda = 50 \ \mu m$, $K \approx 0.02$, and $n \approx 2$. Repeating the above calculations we get

$$\alpha = 5.0 \times 10^3 \text{ m}^{-1}$$

$$R = 0.11 \text{ or } 11\%$$

There is a sharp increase in the reflectance from 11 to 72% as we approach the Reststrahlen peak.