9.3. Construction of the important quantities \(1/(1+T)\) and \(T/(1+T)\)

Example

\[T(s) = T_0 \frac{\left(1 + \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{Q\omega_p} + \left(\frac{s}{\omega_p}\right)^2\right)\left(1 + \frac{s}{\omega_p^2}\right)} \]

At the crossover frequency \(f_c\), \(\| T \| = 1\)
Transient response vs. damping factor

\[\hat{v}(t) \]

vs.

\[\omega_c t, \text{ radians} \]
9.4. Stability

Even though the original open-loop system is stable, the closed-loop transfer functions can be unstable and contain right half-plane poles. Even when the closed-loop system is stable, the transient response can exhibit undesirable ringing and overshoot, due to the high Q-factor of the closed-loop poles in the vicinity of the crossover frequency.

When feedback destabilizes the system, the denominator $(1+T(s))$ terms in the closed-loop transfer functions contain roots in the right half-plane (i.e., with positive real parts). If $T(s)$ is a rational fraction of the form $N(s) / D(s)$, where $N(s)$ and $D(s)$ are polynomials, then we can write

\[
\frac{T(s)}{1 + T(s)} = \frac{\frac{N(s)}{D(s)}}{1 + \frac{N(s)}{D(s)}} = \frac{N(s)}{N(s) + D(s)}
\]

\[
\frac{1}{1 + T(s)} = \frac{1}{1 + \frac{N(s)}{D(s)}} = \frac{D(s)}{N(s) + D(s)}
\]

- Could evaluate stability by evaluating $N(s) + D(s)$, then factoring to evaluate roots. This is a lot of work, and is not very illuminating.
9.4. Stability

Even though the original open-loop system is stable, the closed-loop transfer functions can be unstable and contain right half-plane poles. Even when the closed-loop system is stable, the transient response can exhibit undesirable ringing and overshoot, due to the high Q -factor of the closed-loop poles in the vicinity of the crossover frequency.

When feedback destabilizes the system, the denominator $(1+T(s))$ terms in the closed-loop transfer functions contain roots in the right half-plane (i.e., with positive real parts). If $T(s)$ is a rational fraction of the form $N(s)/D(s)$, where $N(s)$ and $D(s)$ are polynomials, then we can write

$$T(s) = \frac{N(s)}{D(s)} = \frac{N(s)}{N(s) + D(s)}$$

- Could evaluate stability by evaluating $N(s) + D(s)$, then factoring to evaluate roots. This is a lot of work, and is not very illuminating.

Effect of feedback on transfer function poles

Feedback moves the poles of the system transfer functions

- Good news: we can use feedback to alter the poles and improve the frequency response

- Bad news: if you’re not careful, feedback can move the poles into the right half of the complex s-plane (poles have positive real parts), leading to an unstable system

![Open loop](image1)

![Closed loop](image2)
Example

The gain $G(s)$ below has three poles at $s = -1$

$$G(s) = \frac{100}{(1 + s)^3}$$

Add a simple feedback loop:

How does the feedback change the poles?

For our simple example, the closed-loop transfer function is

$$\frac{v_{out}}{v_{in}} = \frac{1}{H} \frac{T}{1 + T} \frac{G}{1 + G} = \frac{100}{1 + 100} \frac{(1 + s)^3}{1 + \frac{100}{1 + s}} = \frac{100}{101 + 3s + 3s^2 + s^3}$$

Factor denominator numerically:

$$\frac{v_{out}}{v_{in}} = \frac{100}{101 + 3s + 3s^2 + s^3} = \frac{100}{(s + 5.64)(s - 1.32 - j4.07)(s - 1.32 + j4.07)}$$

which has poles at $s = -5.64$ (LHP)

and at $s = +1.32 \pm j4.07$ (RHP)

The RHP poles indicate that the closed-loop system is unstable.
Example

The gain $G(s)$ below has three poles at $s = -1$

$$G(s) = \frac{100}{(1 + s)^3}$$

Add a simple feedback loop:

$$G(s) = \frac{100}{1 + s}$$

$G(s)$

$\hat{v}_{in}(s)$

$\hat{v}(s)$

$\hat{v}_{out}(s)$

$T(s)$

$H(s) = 1$

How does the feedback change the poles?

Exact closed-loop transfer function

For our simple example, the closed-loop transfer function is

$$\frac{\hat{v}_{out}}{\hat{v}_{in}} = \frac{1}{H} \frac{T}{1 + T} = \frac{G}{1 + G} = \frac{100}{1 + \frac{100}{1 + s}} = \frac{100}{1 + 3s + 3s^2 + s^3}$$

Factor denominator numerically:

$$\frac{\hat{v}_{out}}{\hat{v}_{in}} = \frac{100}{101 + 3s + 3s^2 + s^3} = \frac{100}{(s + 5.64)(s - 1.32 - j4.07)(s - 1.32 + j4.07)}$$

which has poles at $s = -5.64$ (LHP)
and at $s = +1.32 \pm j4.07$ (RHP)
The RHP poles indicate that the closed-loop system is unstable.
Fundamentals of Power Electronics

Transient response of closed-loop system

One can take the inverse Laplace Transform to find the output waveform \(\hat{v}_{out}(t) \) for a given input. The resulting expression has terms that depend on the poles, of the form

\[
\hat{v}_{out}(t) = K_1 e^{-5.64t} + K_2 e^{(1.32 - j4.07)t} + K_2^* e^{(1.32 + j4.07)t}
\]

The terms with positive real exponents, corresponding to the RHP poles, lead to growing oscillations that are unstable responses.

Reason: the inverse Laplace transform of \(K_2 e^{(1.32 - j4.07)t} + K_2^* e^{(1.32 + j4.07)t} \) is

\[
|K_2| e^{1.32t} \cos\left(4.07t + \angle K_2\right)
\]

Determination of stability directly from \(T(s) \)

- Nyquist stability theorem: general result.
- A special case of the Nyquist stability theorem: the phase margin test

 Allows determination of closed-loop stability (i.e., whether \(1/(1+T(s)) \) contains RHP poles) directly from the magnitude and phase of \(T(s) \).

 A good design tool: yields insight into how \(T(s) \) should be shaped, to obtain good performance in transfer functions containing \(1/(1+T(s)) \) terms.
Determination of stability directly from $T(s)$

- Nyquist stability theorem: general result.
- A special case of the Nyquist stability theorem: the phase margin test

 Allows determination of closed-loop stability (i.e., whether $1/(1+T(s))$ contains RHP poles) directly from the magnitude and phase of $T(s)$.

 A good design tool: yields insight into how $T(s)$ should be shaped, to obtain good performance in transfer functions containing $1/(1+T(s))$ terms.
9.4.1. The phase margin test

A test on $T(s)$, to determine whether $1/(1+T(s))$ contains RHP poles.

The crossover frequency f_c is defined as the frequency where

$$\| T(j2\pi f_c) \| = 1 \Rightarrow 0\text{dB}$$

The phase margin φ_m is determined from the phase of $T(s)$ at f_c, as follows:

$$\varphi_m = 180^\circ + \angle T(j2\pi f_c)$$

If there is exactly one crossover frequency, and if $T(s)$ contains no RHP poles, then

the quantities $T(s)/(1+T(s))$ and $1/(1+T(s))$ contain no RHP poles whenever the phase margin φ_m is positive.
Example: a loop gain leading to a stable closed-loop system

\[\angle T(j2\pi f_c) = -112^\circ \]

\[\varphi_m = 180^\circ - 112^\circ = +68^\circ \]
Example: a loop gain leading to an unstable closed-loop system

\[\angle T(j2\pi f_c) = -230^\circ \]

\[\varphi_m = 180^\circ - 230^\circ = -50^\circ \]
9.4.2. The relation between phase margin and closed-loop damping factor

How much phase margin is required?

A small positive phase margin leads to a stable closed-loop system having complex poles near the crossover frequency with high Q. The transient response exhibits overshoot and ringing.

Increasing the phase margin reduces the Q. Obtaining real poles, with no overshoot and ringing, requires a large phase margin.

The relation between phase margin and closed-loop Q is quantified in this section.
A simple second-order system

Consider the case where $T(s)$ can be well-approximated in the vicinity of the crossover frequency as

$$T(s) = \frac{1}{\left(\frac{s}{\omega_0}\right) \left(1 + \frac{s}{\omega_2}\right)}$$
Closed-loop response

If
\[T(s) = \left(\frac{s}{\omega_0} \right) \left(1 + \frac{s}{\omega_2} \right) \]

Then
\[\frac{T(s)}{1 + T(s)} = \frac{1}{1 + \frac{1}{T(s)}} = \frac{1}{1 + \frac{s}{\omega_0} + \frac{s^2}{\omega_0 \omega_2}} \]

or,
\[\frac{T(s)}{1 + T(s)} = \frac{1}{1 + \frac{s}{Q \omega_c} + \left(\frac{s}{\omega_c} \right)^2} \]

where
\[\omega_c = \sqrt{\omega_0 \omega_2} = 2\pi f_c \quad Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}} \]
Low-\(Q\) case

\[Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}} \]

low-\(Q\) approximation:

\[Q \omega_c = \omega_0 \quad \frac{\omega_c}{Q} = \omega_2 \]

\[f_0 \]

\[f_2 \]

\[\frac{f_0}{f} \]

\[\frac{T}{1 + T} \]

\[f_c = \sqrt{f_0 f_2} \]

\[Q = \frac{f_0}{f_c} \]

\[-20 \text{ dB/decade} \]

\[-40 \text{ dB/decade} \]
High-\(Q\) case

\[\omega_c = \sqrt{\omega_0 \omega_2} = 2\pi f_c \]

\[Q = \frac{\omega_0}{\omega_c} = \sqrt{\frac{\omega_0}{\omega_2}} \]
Q vs. φ_m

Solve for exact crossover frequency, evaluate phase margin, express as function of φ_m. Result is:

$$Q = \sqrt{\frac{\cos \varphi_m}{\sin \varphi_m}}$$

$$\varphi_m = \tan^{-1} \sqrt{\frac{1 + \sqrt{1 + 4Q^4}}{2Q^4}}$$
Q vs. φ_m

\[Q = 1 \Rightarrow 0 \text{ dB} \]
\[Q = 0.5 \Rightarrow -6 \text{ dB} \]
\[\varphi_m = 52^\circ \]
\[\varphi_m = 76^\circ \]
9.4.3. Transient response vs. damping factor

Unit-step response of second-order system $T(s)/(1+T(s))$

$$\hat{v}(t) = 1 + \frac{2Q e^{-\omega_c t/2Q}}{\sqrt{4Q^2 - 1}} \sin \left[\frac{\sqrt{4Q^2 - 1}}{2Q} \omega_c t + \tan^{-1} \left(\sqrt{4Q^2 - 1} \right) \right] \quad Q > 0.5$$

$$\hat{v}(t) = 1 - \frac{\omega_2}{\omega_2 - \omega_1} e^{-\omega_1 t} - \frac{\omega_1}{\omega_1 - \omega_2} e^{-\omega_2 t} \quad Q < 0.5$$

$$\omega_1, \omega_2 = \frac{\omega_c}{2Q} \left(1 \pm \sqrt{1 - 4Q^2} \right)$$

For $Q > 0.5$, the peak value is

$$\text{peak } \hat{v}(t) = 1 + e^{-\pi / \sqrt{4Q^2 - 1}}$$
Transient response vs. damping factor

\[\hat{v}(t) \]

\[\omega_c t, \text{ radians} \]

Graph showing the transient response \(\hat{v}(t) \) versus the damping factor \(\omega_c t \). The graph includes curves for different values of \(Q \) as indicated on the graph.
9.5. Regulator design

Typical specifications:

- Effect of load current variations on output voltage regulation
 This is a limit on the maximum allowable output impedance
- Effect of input voltage variations on the output voltage regulation
 This limits the maximum allowable line-to-output transfer function
- Transient response time
 This requires a sufficiently high crossover frequency
- Overshoot and ringing
 An adequate phase margin must be obtained

The regulator design problem: add compensator network $G_c(s)$ to modify $T(s)$ such that all specifications are met.
9.5.1. Lead (PD) compensator

\[G_c(s) = G_{c0} \frac{1 + \frac{s}{\omega_z}}{1 + \frac{s}{\omega_p}} \]

Improves phase margin

\[f_{\phi_{max}} = \frac{f_p}{f_z} + 45^\circ/\text{decade} \quad -45^\circ/\text{decade} \]

\[G_{c0} \sqrt{\frac{f_p}{f_z}} = \sqrt{f_z f_p} \]
Lead compensator: maximum phase lead

\[f_{\text{qmax}} = \sqrt{f_z f_p} \]

\[\angle G_c(f_{\text{qmax}}) = \tan^{-1} \left(\frac{\sqrt{\frac{f_p}{f_z}} - \sqrt{\frac{f_z}{f_p}}}{2} \right) \]

\[\frac{f_p}{f_z} = \frac{1 + \sin(\theta)}{1 - \sin(\theta)} \]
Lead compensator design

To optimally obtain a compensator phase lead of θ at frequency f_c, the pole and zero frequencies should be chosen as follows:

$$f_z = f_c \sqrt{\frac{1 - \sin(\theta)}{1 + \sin(\theta)}}$$

$$f_p = f_c \sqrt{\frac{1 + \sin(\theta)}{1 - \sin(\theta)}}$$

If it is desired that the magnitude of the compensator gain at f_c be unity, then G_{c0} should be chosen as

$$G_{c0} = \sqrt{\frac{f_z}{f_p}}$$
Example: lead compensation

![Graph showing lead compensation with key frequencies and asymptotes.](image)
9.5.2. Lag (PI) compensation

\[G_c(s) = G_c\infty \left(1 + \frac{\omega_L}{s} \right) \]

Improves low-frequency loop gain and regulation

\[\| G_c \| \]

\[\angle G_c \]

- 20 dB /decade

- 90°

\[f_L \]

\[10f_L \]

+ 45°/decade

0°
Example: lag compensation

Original (uncompensated) loop gain is

\[T_u(s) = \frac{T_{u0}}{1 + \frac{s}{\omega_0}} \]

Compensator:

\[G_c(s) = G_{c\infty}\left(1 + \frac{\omega_L}{s}\right) \]

Design strategy:

Choose \(G_{c\infty} \) to obtain desired crossover frequency \(\omega_L \) sufficiently low to maintain adequate phase margin

Fundamentals of Power Electronics
Example, continued

Construction of $\frac{1}{1+T}$, lag compensator example:

![Graph showing the construction of $1/(1+T)$ with frequency response across different frequencies from 1 Hz to 100 kHz, illustrating the gain and phase characteristics.]
9.5.3. Combined (PID) compensator

\[G_c(s) = G_{cm} \frac{\left(1 + \frac{\omega_L}{s}\right)\left(1 + \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{\omega_{p1}}\right)\left(1 + \frac{s}{\omega_{p2}}\right)} \]
9.5.4. Design example

\[v_g(t) = 28 \text{ V} \]

\[v_c(s) \]

\[G_c(s) \]

\[v_e \]

\[v_{ref} = 5 \text{ V} \]

\[f_s = 100 \text{ kHz} \]

\[s \]

\[L = 50 \mu\text{H} \]

\[C = 500 \mu\text{F} \]

\[R = 3 \Omega \]

\[i_{load} \]

\[v(t) \]

Compensator

Transistor gate driver

Pulse-width modulator

Sensor gain

Fundamentals of Power Electronics

Chapter 9: Controller design
Quiescent operating point

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>$V_g = 28 \text{V}$</td>
</tr>
<tr>
<td>Output</td>
<td>$V = 15 \text{V}$, $I_{load} = 5 \text{A}$, $R = 3 \Omega$</td>
</tr>
<tr>
<td>Quiescent duty cycle</td>
<td>$D = 15/28 = 0.536$</td>
</tr>
<tr>
<td>Reference voltage</td>
<td>$V_{ref} = 5 \text{V}$</td>
</tr>
<tr>
<td>Quiescent value of control voltage</td>
<td>$V_c = DV_M = 2.14 \text{V}$</td>
</tr>
<tr>
<td>Gain $H(s)$</td>
<td>$H = V_{ref}/V = 5/15 = 1/3$</td>
</tr>
</tbody>
</table>
Small-signal model

\[\frac{V}{D^2} \hat{d} \]

\[\frac{V}{R} \hat{d} \]

\[1 : D \]

\[L \]

\[C \]

\[\hat{v}(s) \]

\[R \]

\[\hat{i}_{\text{load}}(s) \]

\[\hat{v}_g(s) \]

\[\hat{v}_e(s) \]

\[G_c(s) \]

\[\frac{1}{V_M} \]

\[V_M = 4 \text{ V} \]

\[\hat{v}_{\text{ref}} (= 0) \]

\[\hat{v}(s) \]

\[H(s) \]

\[H = \frac{1}{3} \]

\[T(s) \]
Open-loop control-to-output transfer function $G_{vd}(s)$

$$G_{vd}(s) = \frac{V}{D} \frac{1}{1 + s\frac{L}{R} + s^2LC}$$

standard form:

$$G_{vd}(s) = G_{d0} \frac{1}{1 + \frac{s}{Q_0\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

salient features:

$$G_{d0} = \frac{V}{D} = 28V$$

$$f_0 = \frac{\omega_0}{2\pi} = \frac{1}{2\pi\sqrt{LC}} = 1kHz$$

$$Q_0 = R \sqrt{\frac{C}{L}} = 9.5 \Rightarrow 19.5dB$$
Open-loop line-to-output transfer function and output impedance

\[G_{vg}(s) = D \frac{1}{1 + s\frac{L}{R} + s^2LC} \]

—same poles as control-to-output transfer function

standard form:

\[G_{vg}(s) = G_{g0} \frac{1}{1 + s \frac{s}{Q_0\omega_0} + \left(\frac{s}{\omega_0}\right)^2} \]

Output impedance:

\[Z_{out}(s) = R \parallel \frac{1}{sC} \parallel sL = \frac{sL}{1 + s\frac{L}{R} + s^2LC} \]
System block diagram

\[T(s) = G_c(s) \left(\frac{1}{V_M} \right) G_{vd}(s) H(s) \]

\[T(s) = \frac{G_c(s) H(s) V}{V_M D} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + \left(\frac{s}{\omega_0} \right)^2} \]

\[\hat{V}_{ref} (=0) \rightarrow \hat{V}_e(s) \rightarrow G_c(s) \rightarrow \hat{V}_c(s) \rightarrow \frac{1}{V_M} \rightarrow \hat{d}(s) \rightarrow \hat{i}_{load}(s) \rightarrow \hat{\nu}(s) \]

\[\hat{V}_d(s) \rightarrow G_{vd}(s) \rightarrow Z_{out}(s) \]

\[\hat{V}_e(s) \rightarrow \frac{1}{V_M} \rightarrow \hat{d}(s) \]

\[\hat{d}(s) \rightarrow \frac{1}{3} \rightarrow H(s) \]

\[\hat{d}(s) \rightarrow G_{vd}(s) \rightarrow Z_{out}(s) \]

\[\hat{\nu}(s) \rightarrow G_{vg}(s) \rightarrow Z_{out}(s) \]

Fundamentals of Power Electronics 51 Chapter 9: Controller design
Uncompensated loop gain (with \(G_c = 1 \))

With \(G_c = 1 \), the loop gain is

\[
T_u(s) = T_{u0} \frac{1}{1 + \frac{s}{Q_0 \omega_0} + \left(\frac{s}{\omega_0}\right)^2}
\]

\[
T_{u0} = \frac{H V}{D V_M} = 2.33 \Rightarrow 7.4 \text{ dB}
\]

\[
f_c = 1.8 \text{ kHz}, \phi_m = 5^\circ
\]