Solution to
Problem Set 8
Power Electronics 3
Spring 2000

Dc and ac analysis of a quasi-resonant converter. The converter illustrated below is a transformer-isolated quasi-resonant converter. It includes a controller that regulates the converter output voltage by variation of the switching frequency. You may assume that the controller is well-designed, such that it tightly regulates the dc output voltage.

Fig. 1 Closed-loop quasi-resonant converter:

(a) What is the parent dc–dc converter? What kind of resonant switch is employed?

(b) Determine the steady-state numerical values of: the output voltage V, the switch conversion ratio μ, and the dc current flowing through the 20 μH inductor. Estimate the quiescent value of the switching frequency (you may do this graphically if you wish).

(c) Write an expression for the control-to-output transfer function (from switching frequency variations f_s to output voltage V), and give expressions for the salient features (dc gain, corner frequencies, and Q-factor). You may neglect the high-frequency dynamics caused by the tank elements. Does the transfer function contain a right half-plane zero?

(d) Construct the Bode plot of the magnitude and phase of your transfer function derived in part (c).
a) Resonant elements (swell) are the 0.36 \mu H inductor and the 0.64 \mu F capacitor.

20 \mu H inductor and 220 \mu F capacitor are relatively large, and constitute the PWM filter elements.

Set resonant elements to zero to obtain the parent dc–dc converter:

![Flyback converter diagram]

Set PWM filter elements and \(v_g \) to their high-frequency ac states (\(C_F \) & \(v_g \rightarrow \text{short}, L_m \rightarrow \text{open} \)) to obtain the resonant switch network:

![Resonant switch network diagram]
Push secondary elements through transformer and rearrange:

\[V = \frac{V_s}{n} \frac{M}{1-M} \]

with \(\mu \) = switch conversion ratio

Solve for \(\mu \):

\[(5V) = \frac{(15V)}{3} \frac{M}{1-M} \Rightarrow \mu = 0.5 \]
Also, we already know the solution for the dc magnetizing current \(I_m \) of the CCM flyback converter:

\[
I_m = \frac{V}{nR} \frac{1}{1-M}
\]

\[
= \frac{(5V)}{3(0.5 \Omega)} \frac{1}{1-0.5} = 6.67 \text{A}
\]

To estimate the switching frequency, we first need to find \(J \), then use \(\mu = \frac{P_2}{P_1} (J) \) to solve for \(F \).

Referred to the transformer primary, the base normalizing quantities are:

\[V_{\text{base}} = V_g + nV \] (same as off-state voltage of MOSFET in parent PWM converter)

\[I_{\text{base}} = \frac{V_{\text{base}}}{R_0} \]

\[R_0 = \sqrt{\frac{L}{C \cdot n^2}} \]

The normalized current \(J \) is

\[J = \frac{I_m}{I_{\text{base}}} \] (normalize the on-state current of MOSFET in parent PWM converter)

Plug in numbers:

\[R_0 = \sqrt{\frac{0.36 \mu H}{0.64 \mu F}} \cdot 3^2 = 0.25 \text{\Omega} \]

\[V_{\text{base}} = 15 + 3.5 = 30 \text{V} \]
\[I_{\text{base}} = \frac{30V}{2.25\Omega} = 13.33A \]

\[J = \frac{6.67A}{13.33A} = 0.5 \]

Now solve for the normalized switching frequency \(F \):

\[\mu = F \frac{P_\frac{1}{2}(J)}{F} \Rightarrow F = \frac{P_\frac{1}{2}(J)}{\mu} \]

with \(P_\frac{1}{2}(J) = \frac{1}{2\pi} \left[\frac{1}{2}J + \pi + \sin^{-1}(J) + \frac{1}{J} \left(1 + \sqrt{1 - J^2} \right) \right] \)

\[P_\frac{1}{2}(0.5) = 1.22 \]

so \(F = \frac{0.5}{1.22} = 0.411 = \frac{f_s}{f_0} \)

The tank resonant frequency is

\[f_0 = \frac{1}{2\pi \sqrt{L \cdot \frac{C}{\mu^2}}} = \frac{1}{2\pi \sqrt{(0.36\mu H)(0.64\mu F/3^2)}} \]

\[= 995 \text{ kHz} \quad (\text{i.e., } 1 \text{ MHz}) \]

So \(f_s = Ff_0 = (0.411)(995 \text{ kHz}) = 409 \text{ kHz} \)
c) Derive control-to-output transfer function

\[G_{vc}(s) = \frac{\hat{V}}{\hat{e}_s} \bigg|_{\Delta = 0} \]

We have

\[J = \frac{i_M}{i_{base}} = \frac{i_M R_0}{v_g + n v} \]

and

\[\mu = \frac{f_s}{f_0} \frac{P_2}{2} \left(\frac{i_M R_0}{v_g + n v} \right) \]

Perturb and linearize:

\[\hat{\mu} = K_c \hat{f}_s + K_v \hat{v} + K_i \hat{i}_M + K_g \hat{v}_g \]

Since we weren't asked to find \(G_{vg}(s) = \frac{\hat{v}}{\hat{v}_g} \), we can set \(\hat{v}_g \) to zero and ignore the \(K_g \hat{v}_g \) term.

\[K_c = \frac{1}{f_0} \frac{P_2(r)}{2} = \frac{1.22}{995 kHz} = 1.22 \times 10^{-6} \text{ Hz}^{-1} \]

\[K_v = F \frac{dP_2(r)}{dJ} \frac{dJ}{dv} \]

See table from notes on web, "Extension of State Space Averaging..." page 13:

\[\frac{dP_2(r)}{dJ} = \frac{1}{2\pi} \left[\frac{1}{2} - \frac{1}{J^2} \right] = -1.108 \]
\[\frac{\partial J}{\partial V} = -\frac{I_m R_o n}{(V_g+nV)^2} = -0.05 \]

so \(K_V = (0.411)(-1.108)(-0.05) = 0.0228 \)

\[K_i = F \frac{dP_i(s)}{dJ} \frac{\partial J}{\partial i_m} \]

with \(\frac{\partial J}{\partial i_m} = \frac{R_o}{V_g+nV} = \frac{2.255}{15V+3.3V} = \frac{1}{I_{base}} = \frac{1}{13.33A} \)

so \(K_i = (0.411)(-1.108)\left(\frac{1}{13.33A}\right) = -0.034 \) note that \(K_i \) is negative

Converter model - block diagram
$G_{vd}(s)$ and $G_{id}(s)$ are transfer functions of the parent PWM flyback converter.

Small-signal model of PWM flyback converter

(see Fig. 7.27 of textbook, p. 28)
(set $R_{on} \rightarrow 0$ and $D \rightarrow D_0$) (replace n with $\frac{1}{n}$)

The transfer function $G_{vd}(s)$ is

$$G_{vd}(s) = \frac{V}{\frac{V_0}{n_0}} \frac{1 - s \frac{n_0 L_1 R}{n^3 \mu^3}}{\text{den}(s)}$$

with $\text{den}(s) = 1 + s \frac{L_n}{n^2 \mu^2 R} + s^2 \frac{L_n C F}{n^2 \mu_0^2}$

(found by setting $\hat{v}_g \rightarrow 0$ and solving for \hat{v})

The transfer function $G_{id}(s)$ is also found by setting $\hat{v}_g \rightarrow 0$, then solving for \hat{i}_M:

push to primary side
Solve:

\[\hat{i}_m = \frac{d}{dt} \left[(V_0 + nV) + \frac{I_M}{\mu_0} \cdot n^2 \mu_0^2 \left(RL || \frac{1}{sC_F} \right) \right] \left[\frac{sL_M + n^2 \mu_0^2 \left(RL || \frac{1}{sC_F} \right)}{1+sRC_F} \right] \]

so

\[G_{id}(s) = \frac{\hat{i}_m}{V} \left|_{V_0=0} \right. = \left[V_0 + nV + n^2 \mu_0^2 I_M \frac{R}{1+sRC_F} \right] \left[\frac{sL_M + n^2 \mu_0^2 \left(RL || \frac{1}{sC_F} \right)}{1+sRC_F} \right] \]

note

\[V = \frac{V_0}{n} \quad \frac{\mu_0}{\mu_0'} \quad \Rightarrow V_0 = nV \cdot \frac{\mu_0'}{\mu_0} \]

\[I_M = \frac{V}{R} \cdot \frac{1}{n\mu_0} \]

so

\[G_{id}(s) = \frac{nV \left(\frac{\mu_0'}{\mu_0} + 1 \right) + n^2 \mu_0' \frac{V}{R} \cdot \frac{1}{n\mu_0} \cdot \frac{R}{1+sRC_F}}{sL_M + n^2 \mu_0^2 \left(RL || \frac{1}{sC_F} \right)} \]
\[G_{id}(s) = \frac{(1+sRC_F) \frac{nV}{\mu_0} + nV}{sLM + s^2 RLM C_{12} + n^2 \mu_0^2 R} \]

\[= \frac{V}{n\mu_0^2 R} \frac{1 + \frac{1}{\mu_0} + s \frac{RC_F}{\mu_0}}{1 + s \frac{L}{n^2 \mu_0^2 R} + s^2 \frac{LM C_F}{n^2 \mu_0^2}} \]

\[= \frac{V (1+\mu_0)}{n\mu_0^2 \mu_0 R} \frac{(1 + s \frac{RC_F}{1+\mu_0})}{(den's)} \]

with den's as defined previously.

Now solve the block diagram.

Could: use algebra, or manipulate block diagram.

\[\hat{f}_s \]
\[\rightarrow \]
\[K_F \]
\[\rightarrow \]
\[+ \]
\[\rightarrow \]
\[\hat{\mu} \]
\[\rightarrow \]
\[G_{ud} \]
\[\rightarrow \]
\[\hat{c}_v \]

\[K_F \]
\[\rightarrow \]
\[+ \]
\[\rightarrow \]
\[K_i \]
\[\rightarrow \]
\[G_{id} \]

Use feedback rule:

\[\begin{array}{c}
A \\
B
\end{array} \rightarrow \]
\[\begin{array}{c}
A \\
1+AB
\end{array} \]
\[G_{vc}(s) = \left. \frac{\hat{v}_g}{\hat{f}_s} \right|_{\hat{u}_g = 0} = \frac{K_c G_{ud}(s)}{1 + |K_i| G_{id}(s) - K_v G_{vd}(s)} \]

Next, plug in expressions for \(G_{ud}(s) \) and \(G_{id}(s) \).
\[G_{vc}(s) = \frac{V}{K_c \frac{1}{\mu_0 \mu_0'} \left(1 - s \frac{\mu_0 L M}{n^2 \mu_0^2 R} \right)}{(dun'(s))} \]

\[1 + |K_i| \frac{V(1+\mu_0)}{n^2 \mu_0^2 \mu_0 R} + \frac{(1 + s \frac{RCF}{1+\mu_0})}{(dun'(s))} - KV \frac{V}{\mu_0 \mu_0'} \left(1 - s \frac{\mu_0 L M}{n^2 \mu_0^2 R} \right) \]

\[\times \frac{V}{(dun'(s))} \]

\[\text{multiply through by } dun'(s) \text{ and collect terms:} \]

\[= \frac{V}{K_c \mu_0 \mu_0'} \left(1 - s \frac{\mu_0 L M}{n^2 \mu_0^2 R} \right) \]

\[+ s \left(\frac{LM}{n^2 \mu_0^2 R} + |K_i| \frac{VCF}{n^2 \mu_0^2 \mu_0 R} + KV \frac{VL}{n^2 \mu_0^2 R} \right) \]

\[+ s^2 \left(\frac{LmCF}{n^2 \mu_0^2} \right) \]

\[G_{vc}(s) = \frac{V}{\mu_0 \mu_0'} \left(1 + |K_i| \frac{V(1+\mu_0)}{n^2 \mu_0^2 \mu_0 R} - KV \frac{V}{\mu_0 \mu_0'} \right) \cdot \frac{1 - s \frac{1}{\omega_2}}{(dun'(s))} \]

\[\text{new poles} \]

with

\[dun'(s) = 1 + s \left(\frac{LM}{n^2 \mu_0^2 R} + |K_i| \frac{VCF}{n^2 \mu_0^2 \mu_0 R} + KV \frac{VL}{n^2 \mu_0^2 R} \right) + s^2 \left(\frac{LmCF}{n^2 \mu_0^2} \right) \]
\[G_{vc}(s) = G_{co} \left(\frac{1 - \frac{s}{\omega_2}}{1 + \frac{s}{Q \omega_0} + \left(\frac{s}{\omega_0} \right)^2} \right) \]

with:

\[G_{co} = \frac{K_c V}{\mu_0 \mu'_0 \left(1 + |k_i| \frac{V(1+\mu_0)}{\eta \mu_0^2 \mu_0 R} - \frac{V}{\mu_0 \mu'_0} \right)} \]

\[\omega_2 = \frac{\eta^2 \mu_0^2 R}{\mu_0 L_M} \quad (RHP) \]

\[\omega_0 = \eta \mu'_0 \sqrt{1 + |k_i| \frac{V(1+\mu_0)}{\eta \mu_0^2 \mu_0 R} - \frac{V}{\mu_0 \mu'_0}} \]

\[Q = \sqrt{1 + |k_i| \frac{V(1+\mu_0)}{\eta \mu_0^2 \mu_0 R} - \frac{V}{\mu_0 \mu'_0}} \frac{1}{\eta \mu'_0 R \sqrt{\frac{L_M}{c_F}} \left(1 + \frac{K_i V}{\mu'_0} \right) + \frac{|k_i| V}{\mu_0 \mu'_0} \sqrt{\frac{c_F}{L_M}}} \]
d) Plug in values

\[G_{ce} = 1.28 \cdot 10^{-5} \text{ volts/Hz} \]

\[f_2 = 17.9 \text{ kHz (RHP)} \]

\[f_0 = 4.97 \text{ kHz} \]

\[Q = 0.501 \Rightarrow \text{almost two real poles at 4.97 kHz} \]