Flyback converter with active clamp snubber. A flyback converter containing an active clamp snubber circuit is illustrated in Fig. 2 below. A transformer model containing a magnetizing inductance, leakage inductance, and an ideal transformer is illustrated. Elements C_s, L_M, and C_f are large in value, so that their switching ripples can be ignored. Element C_1, C_2, and L_l are relatively small in value, and constitute the resonant tank elements. The current i_l reverses in direction, leading to zero-voltage switching. Diode D_3 is ideal. The voltage V_s is slightly larger than V/n.

![Fig. 2 Flyback converter with active-clamp snubber, Problem 2.](image)

Each switching period is composed of the following six subintervals:

1. **Subinterval 1:** Q_1 conducts. This interval ends when the controller turns Q_1 off.
2. **Subinterval 2:** all semiconductors are off.
3. **Subinterval 3:** Diode D_3 conducts
4. **Subinterval 4:** Conducting devices are D_3 and D_2/Q_2. Q_2 is turned on at zero voltage while D_2 conducts. This interval ends when Q_2 is turned off.
5. **Subinterval 5:** Diode D_3 conducts
6. **Subinterval 6:** Conducting devices are D_3 and D_1/Q_1. Q_1 is turned on at zero voltage while D_1 conducts. This interval ends when diode D_3 becomes reverse-biased.

The resonant intervals are subintervals 2, 3, 5, and 6. The converter operates with duty cycle control: the interval DT_s is composed of subintervals 5, 6, and 1.

(a) Sketch the waveforms of $v_1(t)$ and $i_1(t)$.
(b) Sketch the state-plane diagram for this converter, and label the six intervals described above.
(c) What are the conditions for zero-voltage switching of Q_2? of Q_1?
(d) Analysis: solve the state plane diagram of part (b) as appropriate, to write the equations describing each subinterval length and beginning/ending current or voltage.
(e) Sketch the waveforms of the clamp capacitor current i_s and the voltage across the magnetizing inductance v_M. Apply volt-second or charge balance to these waveforms as appropriate. Hence, write a complete set of equations for this converter, that could be solved to find the steady-state solution of the converter. It is not necessary to solve your equations.