Analysis of ZVS-QSW switch cell
(1-transistor case: current-bidirectional transistor + diode)
Single-transistor ZVS-QSW waveforms and state-plane analysis

\[V_{b0x} = V_b = 0 \]
\[I_{b0x} = V_b R_0 \]

\[L_0 = \sqrt{\frac{L}{C}} \]

\[\omega_o T_s \]

\[j_1 \]

\[m_c \]

\[\omega_o t \]

Devices conducting
Interval 1: Q_1 conduction

\[V = <v_c> = \mu \cdot V_1 \]
\[\text{by def.} \]

\[\begin{align*}
L \frac{di_L}{dt} &= V_1 - V > 0 \implies i_L \text{ ramps up as a lin. of time.} \\
\text{at the end of the interval } \Delta \\
i_L(t_\Delta) &= I_{L_1} = \frac{V_1 - V}{L} \cdot t_\Delta, \quad i_L(0) = 0
\end{align*} \]

\[J_{L_1} = (1 - \mu) \Delta \]
Interval 2: transition

\[r_1^2 = J_{l_1}^2 + (1-\mu)^2 \]
\[r_1^2 = J_{l_2}^2 + \mu^2 \]

\[J_{l_1}^2 + (1-\mu)^2 = J_{l_2}^2 + \mu^2 \]
\[J_{l_1}^2 + 1 - 2\mu = J_{l_2}^2 \]

\[J_{l_2} = \sqrt{J_{l_1}^2 + (1-2\mu)} > 0 \]

\[\beta = \beta_1 + \beta_2 = \tan^{-1} \frac{1-\mu}{J_{l_1}} + \tan^{-1} \frac{\mu}{J_{l_2}} \]
Interval 3: D_2 conduction

\[L \frac{di_L}{dt} = -V \]

I_{L2} initial value

\[J_{L2} = \mu \cdot \delta \]
Interval 4: transition

\[V = \mu V_1 \]

ZVS condition: \(\mu > 0.5 \)

\[J_{L3}^2 + (1-\mu)^2 = \mu^2 \]

\[J_{L3}^2 + 1 - 2\mu = 0 \]

\[J_{L3} = 2\mu - 1 \]

\[J_{L3} = \sqrt{2\mu - 1}, \quad \mu > 0.5 \]

\[\xi = \pi - \tan^{-1} \frac{3J_{L3}}{1-\mu} \]

resonant transition
Interval 5: D_1 conduction

\[i_L + \quad \mu \quad i_L - \quad V_1 \quad \text{initially} < 0 \quad V = \mu V_1 \quad J_{L3} \to 0 \]

\[J_{L3} = (1-\mu)\beta \]
Average output current

Approaches to solving for μ

1. $V = \mu V_A = \langle V_c \rangle$
 \[\mu = \frac{\langle V_c \rangle}{V_A} = \langle m_c \rangle \]

2. $I = \langle i_L \rangle$
 $J = \langle \dot{V}_L \rangle$
 $\langle i_L \rangle = \mu \cdot J$

\[I = \frac{1}{T_s} \int_0^{T_s} i_L(t) \, dt = \frac{1}{T_s} \int_2^4 i_L(t) \, dt + \frac{1}{T_s} \int_4^6 i_L(t) \, dt \]

\[J = \frac{F}{2\pi} \left[(L_1 - L_3)(\alpha + \xi) + J_{L_2} \xi \right] \]

\[I = \frac{I_{L_1} - I_{L_3}}{2} \cdot \frac{\alpha + \xi}{\omega_0 T_s} + \frac{I_{L_2}}{2} \cdot \frac{\xi}{\omega_0 T_s} \]

D_1 and/or Q_1 are on. \[\alpha + \xi = \Theta \]
Θ or F are control variables.
Control input: transistor/diode conduction angle θ

Transistor/diode Q_i/D_i conduction angle

Define $\theta = \alpha + \psi$

The transistor/diode duty cycle can be defined as

$$d = \frac{\theta}{\omega_0 T_s} = \frac{\theta F}{2\pi}$$

θ could be viewed as a control input.
A way to solve and plot the characteristics

Given \(\mu \) and \(\Theta \), we can find \(J_2 \) without iteration (and also \(F \)), and then plot the output characteristics of the switch. The relevant equations are:

\[
(1) \quad J_{L3} = \sqrt{2\mu - 1}
\]

\[
(2) \quad J_{L1} = -J_{L3} + \Theta (1-\mu)
\]

which follows from the slope of the current during the transistor conduction interval:

\[
\text{So} \quad I_{L1} = -I_{L3} + \frac{V_d - V}{L} \frac{1}{\omega_c}
\]

normalize to get (2)
\[J_{L_2} = \sqrt{1 - 2\mu + J_{L_1}^2} \]

(4) \[\beta = \tan^{-1}\left(\frac{1 - \mu}{J_{L_1}}\right) + \tan^{-1}\left(\frac{\mu}{J_{L_2}}\right) \]

(5) \[\delta = \frac{J_{L_2}}{\mu} \]

(6) \[\xi = \pi - \tan^{-1}\left(\frac{J_{L_3}}{1 - \mu}\right) \]

(7) \[F = \frac{2\pi}{\theta + \beta + \delta + \xi} \]

(8) \[J = \frac{F}{4\pi} \left[(J_{L_1} - J_{L_3})\theta + J_{L_2}\delta\right] \]

So given \(\mu \) and \(\theta \), we can evaluate the above equations in order, to find the normalized dc inductor current without iteration.
Results: output-plane characteristic of the switch conversion ratio \(\mu \) with \(F \) as the parameter

Basic single-transistor resonant switch
Output-plane characteristic of the switch conversion ratio μ with θ as the parameter

Course website contains Excel spreadsheet (with function macros) that evaluates the above equations and can plot the above characteristic.

Basic single-transistor switch

Transistor (Q_1/D_1) conduction angle θ
Summary of 1-transistor ZVS-QSW characteristics

Conversion ratio μ vs. J

μ vs. F

$F \to 0$

CCM.
Boundaries of ZVS operation

- $J = 0$: zero DC inductor current.

Diagram:
- $F < 1$
- $\delta = 0$: D_2 does not conduct at all.
- $\Theta = 0$: Q_1 never conducts.
- $\delta = 0$: D_2 never conducts.

- $J = 0$: at the end of the power switch.

- $F = 1$: