Zero-voltage transition converters: the phase-shifted full bridge converter

Buck-derived full-bridge converter
Zero-voltage switching of each half-bridge section
Each half-bridge produces a square wave voltage. Phase-shifted control of converter output

A popular converter for server front-end power systems
Efficiencies of 90% to 95% regularly attained
Controller chips available
usually assume

\[C_{leg1} + C_{leg2} = C_{legs} + C_{legs} \]

Detailed waveforms, including resonant transitions

\[Q_1, Q_2 \text{ legs resonant frequency:} \]

\[f_0 = \frac{1}{2\pi \sqrt{L_C(C_{leg1} + C_{leg2})}} \]

\[R_0 = \sqrt{\frac{L_C}{C_{leg1} + C_{leg2}}} \]

\[Q_3, Q_4 \text{ legs resonant frequency:} \]

\[f_0 = \frac{1}{2\pi \sqrt{L_C(C_{legs} + C_{legs})}} \]

\[R_0 = \sqrt{\frac{L_C}{C_{legs} + C_{legs}}} \]

Subintervals:

<table>
<thead>
<tr>
<th>Subinterval</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>0</th>
</tr>
</thead>
</table>
| Conducting devices: | \(Q_2 \) | \(D_4 \) | \(D_4 \) | \(Q_1 \) | \(Q_1 \) | \(Q_1 \) | \(X \) | \(D_4 \) | \(Q_1 \) | \(X \) | \(D_4 \) | \(\{ Q_2 \} \) | \(\{ P-A \} \)
| \(D_5 \) | \(D_5 \) | \(D_5 \) | \(X \) | \(X \) | \(D_5 \) | \(D_5 \) | \(D_5 \) | \(D_5 \) | \(X \) | \(X \) | \(D_6 \) | \(\{ D_5 \} \) | \(\{ \text{Secondary diodes} \} \)
Intervals 1-3: D5/D6 commutation

\[i_s(t) \]

\[v_d(t) \]

\[v_c(t) \]

\[n_l/(C_{eq3}+C) \]

\[Q_2 \text{ turns off.} \]

\[D_5, D_6 \text{ can not be off at the same time} \]

\[i_c - n_i_5 + n_i_6 = 0 \]

\[i_5 = \frac{1}{2} \left(\frac{i_c}{n} + I \right) \]

\[i_6 = \frac{1}{2} \left(-\frac{i_c}{n} + I \right) \]

\[i_c = n (i_5 - i_6) \]

\[\text{short: } i_6 = I , i_5 = 0 \]

\[\text{end: } i_6 = 0 , i_5 = I \]

\[i_c = -nI \]

\[i_c = +nI \]
Interval 1

Begins when Q_2 turns off

D_4, D_5, D_6 conduct

Note that when D_5 and D_6 both conduct,
then the transformer secondary is short-circuited.

$i_c < 0$. Initial $v_2 = 0$, $i_c = -nI < 0$!

$$v_2 = C_{\text{on}1} + C_{\text{on}2}$$

center at 0, 0
initial pt. $m_2 = 0$

$k = -1$

Subinterval: 0 1 2

Conducting devices:

Q_2 D_1

D_4 D_5

D_3 D_6 D_7 D_8

4
Normalized state plane

- Light load ZVS
 - Worst case: $I = I_{\text{min}}$
- $(C_{\text{eq1}} + C_{\text{eq2}})_{\text{min}} = \text{device caps.}$
 - $(R_{\text{on}} \cdot C_{\text{ds}})$
- Pick L_c large enough to enable ZVS

Normalized state plane:

Define $V_{\text{base}} = V_g$

$$F_{\text{base}} = \frac{V_g}{R_0}, \quad R_0 = \sqrt{\frac{L_c}{C_{\text{eq1}} + C_{\text{eq2}}}}$$

$$\omega_0 = \frac{1}{\sqrt{L_c \left(C_{\text{eq1}} + C_{\text{eq2}} \right)}}$$

$$j_c = \frac{j_c}{F_{\text{base}}}, \quad J = \frac{nI}{F_{\text{base}}}, \quad m_2 = \frac{v_2}{V_{\text{base}}}$$

Initial $j_c = -J, \quad m_2 = 0$

ZVS condition:

$$J \geq 1$$
$$\frac{nI}{V_g/R_0} \geq 1$$
$$nI \geq V_g/R_0$$
$$nI \geq V_g \sqrt{\frac{C_{\text{eq1}} + C_{\text{eq2}}}{L_c}}$$

$r_i = J$
Solution of state plane

Interval ends when $v_2 = v_g$, forward-biasing D_1. At end of interval, $m_2 = 1$ and $j_0 = -j_{c1}$.

Solution of state plane geometry:

$$j_{c1} = \sqrt{r_1^2 - 1} = \sqrt{J^2 - 1}$$

and

$$\alpha = \omega_0 t_1 = \tan^{-1} \left(\frac{1}{j_{c1}} \right) = \tan^{-1} \left(\frac{1}{\sqrt{J^2 - 1}} \right)$$

where interval 1 length $= t_1$.

For zero-voltage switching, we require $J \geq 1$.

If $J < 1$, then v_2 never reaches v_g, and switching loss occurs when Q_1 turns on.
Subintervals 2 and 3

Initial \(i_c = -i_{c1} \)

Let \(t_3 + t_2 = \text{length of intervals } 2 \) and 3

Interval end when \(i_c = uI + i_{c1} \); \(D_6 \) then becomes reverse-biased

So \(\frac{V_g}{L_c} (t_2 + t_3) = uI + i_{c1} \)

\[t_3 + t_2 = \left(uI + i_{c1} \right) \frac{L_c}{V_g} \]
Subinterval 4

Power delivery from V_g to V

Circuit is

Q_1

V_g

nI

$i_c = nI$ constant

$V_o = nV_g$

V_c

$Q_4: V_c = 0$

Power is transferred through switches and transformer to output.

Interval ends when controller turns off Q_4.

$L_F >> n^2L_c$

nV_g

$L_c \cdot n^2 + L_F$

$V_o = nV_g$

C_F

t

Subinterval:

<table>
<thead>
<tr>
<th>Interval</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_2</td>
<td>X</td>
<td>D_1</td>
<td>Q_1</td>
<td>Q_4</td>
<td>Q_5</td>
<td>X</td>
</tr>
<tr>
<td>Q_3</td>
<td>D_2</td>
<td>D_4</td>
<td>Q_4</td>
<td>D_5</td>
<td>D_6</td>
<td>X</td>
</tr>
<tr>
<td>Q_4</td>
<td>D_3</td>
<td>D_5</td>
<td>Q_4</td>
<td>D_5</td>
<td>D_6</td>
<td>X</td>
</tr>
<tr>
<td>Q_5</td>
<td>D_6</td>
<td>D_5</td>
<td>D_6</td>
<td>D_6</td>
<td>D_6</td>
<td>X</td>
</tr>
<tr>
<td>Q_6</td>
<td>D_5</td>
<td>D_5</td>
<td>D_6</td>
<td>D_6</td>
<td>D_6</td>
<td>X</td>
</tr>
</tbody>
</table>

Conducting devices:
Subinterval 5

v_4 charges from 0 to v_g, with slope $\frac{nI}{C_{leg3} + C_{leg4}}$

Length of interval is $t_S = \frac{V_g}{nI} \left(C_{leg3} + C_{leg4} \right)$

During this interval, voltage across L_c is $L_c \frac{d(nI)}{dt} \times 0$ and $V_o = n(v_g - v_4)$

ZVS: output current charges C_{leg} without requiring $J > 1$
Subinterval 6

- Current i_c circulates around primary-side elements, causing conduction loss.
- This current arises from stored energy in L_c.
- The current is needed to induce ZVS during next subinterval.
- To maximize efficiency, minimize the length of this subinterval by choosing the turns ratio n such that $M = V/nV_g$ is only slightly less than 1.
Subintervals 7 to 11 and 0 are symmetrical to subintervals 1 to 6
Complete state plane trajectory: