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Multilayered Image Representation:
Application to Image Compression

François G. Meyer, Member, IEEE, Amir Z. Averbuch, Member, IEEE, and Ronald R. Coifman

Abstract—The main contribution of this work is a new par-
adigm for image representation and image compression. We de-
scribe a new multilayered representation technique for images. An
image is parsed into a superposition of coherent layers: piecewise
smooth regions layer, textures layer, etc. The multilayered decom-
position algorithm consists in a cascade of compressions applied
successively to the image itself and to the residuals that resulted
from the previous compressions. During each iteration of the algo-
rithm, we code the residual part in a lossy way: we only retain the
most significant structures of the residual part, which results in a
sparse representation. Each layer is encoded independently with a
different transform, or basis, at a different bitrate, and the com-
bination of the compressed layers can always be reconstructed in
a meaningful way. The strength of the multilayer approach comes
from the fact that different sets of basis functions complement each
others: some of the basis functions will give reasonable account of
the large trend of the data, while others will catch the local tran-
sients, or the oscillatory patterns. This multilayered representa-
tion has a lot of beautiful applications in image understanding, and
image and video coding. We have implemented the algorithm and
we have studied its capabilities.

Index Terms—Adaptive coding, cosine transforms, image
coding, multilayered coding, wavelet transforms.

I. INTRODUCTION

T HE underlying assumption behind transform coding is that
the basis (e.g., a discrete cosine transform (DCT)

basis, or a wavelet basis) used for compression is well adapted
to most images. This assumption is clearly violated by the fol-
lowing observation, made by the authors in [1]: at low bit rates,
the distortion depends on the ability of the basis to approximate
the image with a very small number of coefficients

(1)

A consequence of this observation is that one should be able to
reduce the distortion by replacing an orthonormal basis with a
richer library of basis functions. The size of such a library is
typically much greater than the effective dimension,, of the
input space. One can then exploit this redundancy by choosing
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among many possible representations that expansion of the
image which results in the best approximation with a very small
number of coefficients. This fact has been observed for a long
time, and it was one of the motivations for the construction
of the wavelet packets, and cosine packets libraries. Because
the size of these libraries become exponentially large as the
size of the image increases, the authors in [2] have devised
an astute dynamic programming strategy in order to extract
the “best basis” from a large library of basis functions. As
was observed in [3] the best-basis is always trying to find a
compromise between two conflicting goals: 1) describe the
large scale piecewise smooth regions and 2) describe the local
textures. For this reason, the best basis rarely provides the
optimal transform to compress large classes of images (such as
the so-called “natural images”). As was observed in [4], if the
signal is composed of highly nonorthogonal components, then
the method may not yield a sparse representation. By dropping
the “orthonormal basis” constraint, it becomes in principle
possible to match the local textures with localized cosine
functions (for instance), and the piecewise smooth regions with
wavelets. Mallat and Zhang [5] proposed to use the projection
pursuit algorithm [6] to identify such components. Because
the projection pursuit algorithm is only a greedy algorithm
it suffers from some serious limitations: 1) even if the initial
image is a finite (possibly small) linear combination of the
vectors of the library, the projection pursuit algorithm is not
guaranteed to recover the components and 2) the algorithm
converges very slowly as one increases the number of terms
in the approximation. An interesting alternative was proposed
by Chen [4]: for any given signal , one constructs a basis
from vectors of the library in such a way that the norm
of the coefficients, , is minimized. Minimizing
the norm will result in a very sparse representation of.
Furthermore, the authors proved that if the original signalis
a very sparse combination of some vectors of the library, then
the coefficients can be recovered with perfect accuracy.
Unfortunately the overall complexity of the algorithm is very
high: , which makes this approach of little
practical use for image compression.

In this work we propose a general framework for image rep-
resentation. Our hypothesis is that an image can be decomposed
as the sum of two layers: a “cartoon image” and a texture map.
The cartoon image provides a description of the salient parts, or
edges, inside the image, as well as the piecewise smooth changes
in the illumination. The texture map permits to fill in the texture
in the regions enclosed by edges. We advocate that the cartoon
and texture map should be represented with two different sets of
basis functions. We propose to represent the cartoon image with
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wavelets. Because a cartoon is composed of edges, one should
really be using brushlets [7] or ridgelets [8]. Unfortunately there
exists no discrete orthonormal ridgelet transform, and brushlets
are still too imprecise. Our choice of tensor products of wavelets
is therefore suboptimal, but as better libraries become available
they can be used within our framework. Our second hypothesis
is that local cosine (or wavelet packet) bases are better suited
than wavelets to represent periodic textures. Our recent exper-
iments [9] with textured images taken from Brodatz’s book,
and the MIT VisTex database, indicate that an advantage can be
gained by using local cosine bases over wavelets to encode im-
ages that contain periodic textures. The concept of multilayer
representation was used successfully for removing noise from
audio signals [10], and coding audio signals [11]. It was natural
to extend the concept to the problem of sparse representation
of images, or image compression. Related ideas have appeared
recently in the image processing literature. In [12] the authors
propose to replace the DCT used in JPEG with several different
transforms that would be better adapted to the local statistics
within each block. Our approach is not based on a block by
block division of the image, but rather on a model of several
layers. In [13], the authors describe a lossless coding algorithm
that is based on the “lossy-plus-residual” concept. The image
is first coded with a wavelet basis, and the residual is then en-
coded in a lossless manner with wavelet packets. The lossy part
of their coder is in effect a simple wavelet coder. In this work
we intend to address a more general and deeper problem, where
one wants to approximate an image using a superposition of co-
herent layers: smooth-regions and edges layer, textures layer,
etc. The rest of the paper is organized as follows. In the next
section, we provide a detailed description of the algorithm. In
Section III, we discuss a key feature of the algorithm: the ability
to obtain a specialized, or tailored, basis to encode each layer

. In Section IV, we describe the quantization and ordering of
the local cosine and wavelet packets coefficients. Results of ex-
periments are presented in Section V.

II. M ULTILAYERED IMAGE COMPRESSION

A. Cascade of Compressions

A block diagram of the multilayered algorithm is shown in
Fig. 1. The multilayered compression algorithm consists in a
cascade of compressions applied successively to the image itself
and to the residuals that resulted from the previous compres-
sions. An initial main approximation is obtained by compressing
the input image with a wavelet basis. This first approximation
preserves the general shape of the image, and captures the trend
in the intensity function. As shown in the experiments, this
first layer provides a “cartoon,” or segmentation, of the orig-
inal image. We then reconstruct the compressed part, and we
calculate the error between the original and compressed data.
This compression error defines the first remainder, orresidual.
Residuals are composed of textures, and are compressed with
wavelet packets or local trigonometric bases. These bases are
well adapted to texture coding [3], [9]. Once the first residual
is compressed, one defines the second residual as being the
compression error of the first residual. The algorithm keeps on
compressing the successive residuals until we reach a residual

that contains no more structure. We describe now in details
the different stages of the algorithm. We consider a sequence
of libraries of functions . One can construct very large
collections of orthonormal bases from . In this work
contains only one single wavelet basis, andis a library of
wavelet packets, or a library of local cosine basis functions.

1) Initialization: Let be an image. We first compress
over the library , using the budget . The approximation is
performed under a budget constraint, and the result of the ap-
proximation should be described with at mostbits. Let be
the decoded image after decompression.is an approxima-
tion of the original image , and we have

with (2)

where is the approximation error. At this point, we refine
the approximation of by calculating an approximation of the
residual . This is achieved by compressing the residual. But
in order to discover different features in the image, we use a
different library to compress . We use a budget of bits to
compress . A best basis, , that provides the
optimal compression of , is constructed from elements of
the library

with (3)

where are the quantized coefficients, and is the
set of indices of the basis functions that constitute the best basis.
We now reconstruct a second approximationof

(4)

where is an image that can be encoded with bits.
2) Main Loop of the Algorithm:Fig. 1 shows the main loop

of the algorithm. Let us assume that we have carried the ap-
proximation of up to step . Let be the residual of
the approximation at step . A best basis, , that
provides the optimal approximation of with bits, is
constructed from the library

with (5)

where is the set of indices of the basis functions that consti-
tute the best basis. Finally, we reconstruct an approximation of

using the compressed residual images

(6)

where is an image that can be compressed with a budget of
bits. The coefficient of the nonlinear approxima-

tion (6) is the quantized inner product .

B. Budget Allocation

For the class of images that we consider in this work we al-
ways choose to be a wavelet basis. The second libraryis
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Fig. 1. Block diagram of the multilayered compression algorithm. In the
first pass of the algorithm, the switch (on the left) is turned toward the
original image (i.e., the image that we want to compress). In the subsequent
refinement passes the switch is turned toward the residual image. The block
in the dotted line compresses either the original image, or the residual. This
single pass compression consists of two parts: 1) best basis selection, and
calculation of the coefficients of the image using the best basis and 2) ordering
of the coefficients, and quantization of the stream of coefficients. Finally, the
quantized coefficients are entropy coded. The residual error is calculated, and
is fed back to the compression algorithm.

either a library of local cosines, or wavelet packets. As shown in
[3] and [9], these two libraries are well adapted to the represen-
tation of periodic textures. Once the library of the second layer
is chosen, the only parameters that remain to be determined are
the numbers of bits allocated to each layer. After a large number
of experiments we made the following observation: the optimal
bit allocation strategy (that we computed using an exhaustive
search) is always of the following two types:

1) the main part of the bit budget is allocated to the wavelet
layer, and very few bits are kept for the textural layer;

2) the main part of the budget is allocated to the textural
layer, and very few bits are allocated to the wavelet layer.

One can interpret these two bit allocation policies as a partition
of the set of images into two different classes:

1) images that can be easily compressed in a wavelet basis,
but that also contain small areas of periodic textures;

2) images that contain mostly patches of periodic textures.
The wavelet layer for such images provide a very coarse
segmentation of the image.

In order to assign a new image to one of the two classes, we
compute the wavelet expansion and the local cosine expansion
of the image, and we compare the decay of the coefficients in
each basis. Fig. 2 shows the decay of the wavelet coefficients
and local cosine coefficients for two different images: Lena and
roofs. The Lena image is a wavelet-friendly image that can be
very easily coded with a wavelet transform. The roofs image
(see Figs. 6 and 7) contains many patches of periodic texture.
As was shown in [9], this image can be well compressed in a
local cosine basis. For both images the decay of the coefficients
is of the form , where is the index or the ranked (cosine or
wavelet) coefficient. The wavelet coefficients of the Lena image
have a faster decay than the local cosine coefficients. The re-
verse phenomenon occurs for the image roofs.

Once we know what is the type of the image (wavelet versus
textural), we can rapidly search for the optimal bit allocation
policy. Because the budget of the coarse layer (local cosine or

Fig. 2. Decay of the normalized coefficients in the local cosines and wavelet
bases for the images (top) Lena and (bottom) roofs. The coefficients are ranked
according to their magnitude, and normalized by the largest coefficient to
compensate for different normalization factors in the transforms. The decay
is of the form1=j , wherej is the index or the ranked (cosine or wavelet)
coefficient.

wavelet) varies only over a small range, one can rapidly search
for the optimal number of bits allocated to the coarse layer.

C. Geometric Interpretation

We consider the case where we only have two layers: a
wavelet layer, and (for instance) a local cosine layer. For the
sake of simplicity we replace the quantization by a linear
projection on the subset of basis vectors for which the quan-
tized coefficients are nonzero. The multilayer algorithm can
then be interpreted as a sequence of projections on successive
subspaces (see Fig. 3). The first subspace,, is spanned
by the subset of wavelet basis functions for which the
quantized coefficients of the original image are nonzero.
The second subset, , is formed by the subset of local cosine
basis functions for which the quantized coefficients of
the residual image are nonzero, etc.

Unfortunately, the two subspaces and are not or-
thogonal to each others, and therefore one should replace the
orthogonal projection on each subspace by an oblique projec-
tion parallel to the other subspace. As shown in Fig. 3, if one
uses orthogonal projections then is overestimated. The final
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Fig. 3. Left: the vectorx is decomposed into^R , ^R andR . At each time the
residual is projected on a new subset of vectors. Right: we replace orthogonal
projections by oblique projections. The vectorx is now decomposed into exactly
two vectors^R and ^R .

residual is highly correlated with , and should be added
back to to correct the initial overestimation.

D. Toy Example

Fig. 4 illustrates the principle of the algorithm. The first it-
eration of the algorithm is shown in the top of Fig. 4 where
the piecewise smooth variations of the intensity is described by
the layer with very few wavelet coefficients (compression
ratio 750). During the second pass of the algorithm, we com-
press the residual with an adapted local cosine
basis (compression factor70). The result of the compression,

, is shown in the center of Fig. 4, and the second residual
, is shown on the bottom. constitutes the

second layer. Nearly all the texture has been removed from the
image , and is coded in the second layer . As a result,
most of the features present in the image have been coded in
either one of the first two layers, and the final residual(see
Fig. 4—bottom) appears as random noise. Whenand are
added together, we obtain an image which is compressed by a
factor of 64 (see Fig. 7).

Visual inspection of the second layer in Fig. 4—center
suggests that this textural layer should be coded with two-di-
mensional (2-D) oscillatory patches, such as 2-D local trigono-
metric bases. In order to corroborate this visual and geometric
intuition, we show in Fig. 5 the decay of the wavelet and local
cosine coefficients of the residual image. The coefficients
were sorted by decreasing order of magnitude, and only the first
10 000 coefficients are displayed. It is clear from Fig. 5 that the
wavelet coefficients have a slower decay than the local cosine
coefficients, indicating that the local cosines are better suited
than the wavelets for coding .

III. B EST BASIS SELECTION

A. Libraries of Basis Functions

One of the key tenet of the multilayered representation is a
mechanism to obtain a specialized, or tailored basis to encode
each layer . Examples of such libraries include the following.

Local Trigonometric Functions [14]. Local trigonometric
transforms provide an adaptive segmentation of the spatial do-
main in terms of oscillating patterns. An image is decomposed
into overlapping blocks of different sizes within which a local
Fourier expansion, or a DCT, is performed. Instead of abruptly

cutting blocks in the image, we usesmooth orthogonal projec-
tors [14], [15]. We conducted an extensive study [9] using im-
ages with periodic textures, and we were able to demonstrate
that an advantage can be gained by using local cosine bases over
wavelets to encode periodic texture.

Wavelet Packets[16]. Loosely speaking, wavelet packets
make it possible to adaptively tile the frequency domain into dif-
ferent bands of arbitrary size. Wavelet packets have been used
to characterize textures, and code textural images [3], [17], [18].
However, an elementary 2-D wavelet packet always displays
a “criss-cross” pattern, which comes from its two symmetric
peaks in the Fourier domain. As a result one needs a combi-
nation of several wavelet packets to characterize a single 2-D
pattern oscillating along one direction [7].

Another example of library is the collections of
Brushlets [7]. Brushlets are new families of steerable

wavelet packets that adaptively segment the Fourier plane
to obtain the most concise and precise representation of the
image in terms of oriented textures with all possible directions,
frequencies, and locations.

Because each library is overcomplete, it is possible to obtain
a very sparse representation of each layerby “tailoring”
its representation. Even though one could work with other
overcomplete representations that do not necessarily contain
orthogonal bases [19], [5], the libraries of orthonormal bases
offers many advantages: i) they provide very large subcollection
of orthogonal bases, ii) in an orthogonal basis the decomposi-
tion, and the reconstruction can be performed using very fast
algorithms, which are numerically exact and stable, and iii)
there exist some fast algorithms that can be applied in real
time, to select the optimal decomposition over the library [2].

B. Choice of a Cost Function

Coifman and Wickerhauser [2] suggested to use a fast
dynamic programming algorithm to search for thatbest basis
which is optimal according to a given cost function. In this
work, one basis is better than another if it provides a better
reconstruction quality for the same number of bits spent in
coding the coefficients. Ramchandran and Vetterli [18] wedded
the bit allocation algorithm of Shoham and Gersho [20] to
the best basis algorithm [2]. Unfortunately, their approach
is extremely computationally intensive: the problem in [18]
involves three layers of nonlinear approximations, only one
of which lends itself to a fast algorithm. Instead of using the
rate distortion framework, we designed a cost function that
returns an estimate of the actual rate achieved by each node.
The cost function mimics the actual scalar quantization, and
entropy coding, which are presented in Section IV. However,
the cost function is much faster to compute. It is composed of
two complementary terms:

• , the cost of coding the sign and the magnitude of the
nonzero output levels of the scalar quantizer;

• , the cost of coding the locations of the nonzero
output levels (significance map).

Let . A first order approximation to the cost
of coding the magnitude of the output levels
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(a) (b)

(c)

Fig. 4. (a) The first layer,^R , is the decoded image after a wavelet compression by a factor 750 of the original. The difference between the original image, and
this layer constitutes the first residualR . (b) The second layer,^R , is reconstructed after a compression by a factor 70 of the first residualR using a local cosine
basis. (c) The second residualR is the difference between the first residualR and the second layer^R .

is given by the number of bits needed to represent the set

(7)

The second term, , is calculated using the first order en-
tropy of a Bernoulli process: each coefficient is significant
with a probability , and we assume that the significance of the
coefficients are independent events. We get

(8)

The computation of the cost function requires to quantize the
coefficients. A first estimate of the quantization step is required
to compute the cost function. A second pass uses the actual
quantization step obtained after quantization.

IV. QUANTIZATION

A. Laplacian Based Salar Quantization

The distributions of the cosine and wavelet packet coeffi-
cients are approximated with a Laplacian distribution. The
Laplacian distribution yields tractable computations of the
optimal entropy constrained scalar quantizers [21]. We use
a particularly efficient near optimal scalar quantizer, with a
symmetric dead-zone, and a reconstruction offset [21].

B. Ordering of the Coefficients and Entropy Coding

After quantization, the positions of the nonzero output levels
are recorded in a significance map. The lossless compression of
the significance map takes advantage of the fact that large output
levels often appear in clusters. If one uses wavelet packets, sub-
bands are scanned by increasing frequency. We then scan all
the pixels inside any given subband using a Hilbert space filling
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Fig. 5. Decay of the normalized coefficients in the local cosines and wavelet
bases of the residualR . The wavelet coefficients have a slower decay than the
local cosine coefficients.

Fig. 6. Roofs at 0.125 bit per pixel, SPIHT, and PSNR= 23.77 dB.

curve [3]. If one uses local cosines, one gathers together coef-
ficients with similar two dimensional frequencies [9]. One first
divides each block into a fixed number of frequency subsets: in
each subset the coefficients have similar two-dimensional fre-
quencies. We then gather from all the blocks all the coefficients
that are in the same subset. The signs of the output levels are
not entropy coded, but are simply packed. The magnitude of the
output levels are variable length encoded, using an arithmetic
coder to encode the length. The best basis geometry is described
by a quadtree. We code the quadtree, with an adaptive arithmetic
coder.

V. EXPERIMENTS

We have implemented the coder and decoder, and an actual
bit stream is generated by the coder. For each experiment we

Fig. 7. Roofs at 0.125 bit per pixel, multilayer, and PSNR= 25.23 dB.

generated a compressed file with a size equal to the targeted
budget. We present the results of the multilayer compression
algorithm, using the following test images.

1) Roofs, 8 bpp, 512 512. This image is part of the MIT
VisTex database. It is composed of a mixture of periodic texture
(roofs), as well as smooth regions (façades and sky).

2) Barbara, 8 bpp, 512 512. It is the standard image of the
lady with the stripes and checker tablecloth.

3) Clown, 8 bpp, 512 512. It is the standard image of the
clown.

These images are difficult to compress because they contain
a mixture of large smooth regions, and long oscillatory patterns.
In order to evaluate the performance of our algorithm, we com-
pared it to one of the best wavelet coder that was available to us:
the SPIHT wavelet coder of Said and Pearlman [22].

Roofs: Because this image contains large regions with peri-
odic texture such as the tiles on the roofs of the buildings, we
expect the combination of wavelets and local cosines to per-
form well. The optimal choice for the second layer was indeed
the local cosine library. As shown in Fig. 6, the wavelet coder
could not preserve the tiles on the roof of the buildings. In fact,
our coder outperformed SPIHT by 1.1 to 1.63 dB (see Table I).
While some ringing artifacts are visible Fig. 7 in the multi-
layer image on the top of the roof (where the intensity abruptly
changes), similar artifacts are also visible in the wavelet coded
image. Fig. 8 illustrates the ability of the local cosine to preserve
the periodic texture on the roof, even at small bit-rates.

Barbara: The local cosines provided again the optimal
library to encode the second layer. Our coder outperformed
SPIHT by 0.7 to 1.60 dB (see Table II). The periodic texture on
the pants of the lady is very well preserved by the multilayer.
The texture on the tablecloth is also well rendered (compare
Figs. 9 and 10). Unfortunately, some criss-cross patterns appear
on the face of Barbara (see Fig. 10). These patterns come from
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TABLE I
ROOFS: PSNR (IN DECIBELS) FOR VARIOUS BIT RATES

Fig. 8. Detail of the roofs. Left: wavelet coder and right: multilayer.

TABLE II
BARBARA: PSNR (IN DECIBELS) FOR VARIOUS BIT RATES

Fig. 9. Barbara at 0.125 bit per pixel, SPIHT, and PSNR= 24.86 dB.

blocks that are at the boundary of the face and the scarf (see
Fig. 11). The distribution of coefficients in such blocks is dom-
inated by the periodic texture of the scarf. Because the intensity

Fig. 10. Barbara at 0.125 bit per pixel, multilayer, and PSNR= 26.21 dB.

Fig. 11. Detail of Barbara. Left: wavelet coder and right: multilayer.

in the area of the face is smooth, one needs many other coef-
ficients to cancel the periodic pattern of the neighboring scarf.
Many of these coefficients are set to zero by the quantization.

A “wavelet friendly” image: Clown . While the goal of this
work is the coding of images that contain a mixture of piece-
wise smooth regions as well as periodic textures, we wanted to
benchmark our coder against a “wavelet-friendly” image. We
report in Table III the results obtained with the image “Clown.”
For this image, the wavelet packets provided the optimal library
for encoding the second layer. Our coder only marginally out-
performed SPIHT in terms of PSNR. Figs. 12 and 13 show the
decoded Clown at 0.125 bbp using SPIHT, and the multilayer
algorithm. The decoded SPIHT image is more blurred than the
multilayered image. In particular, the reflection of the clown in
the mirror, as well as the right hand of the clown have been
smeared by the wavelet coder. SPIHT was also unable to pre-
serve the texture of the wallpaper or the texture of the clown’s
shirt. Overall, the multilayer algorithm reconstructs an image
that is better in terms of visual quality than the image recon-
structed by the wavelet coder.
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TABLE III
CLOWN: PSNR (IN DECIBELS) FOR VARIOUS BIT RATES

Fig. 12. Clown at 0.125 bit per pixel, SPIHT, and PSNR= 28.23 dB.

Fig. 13. Clown at 0.125 bit per pixel, multilayer, and PSNR= 28.64 dB.

VI. CONCLUSION

We have addressed the problem of efficiently coding images
that contain a mixture of smooth and textured features. We have
shown that a new solution to the image coding problem is pro-
vided by “multilayered” representations. An image is parsed
into a superposition of coherent layers: smooth-regions layer,
textures layer, etc. A coder based on this new paradigm was
studied: it offers the advantage of being scalable, both in term
of spatial resolution, and in terms of quality of reconstruction.
The evaluation of the algorithm indicates that this new coder
outperforms one of the best wavelet coding algorithms [22],
both visually and in term of the quadratic error. Furthermore
in error-prone environment at low-bitrate (such as wireless net-
works), this decomposition permits to efficiently protect the first
layer (which corresponds to a very small number of bits), and
could provide robust transmission over mobile channels.
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