Reflected & Transmitted amplitudes

S polarization (TE)

- If \(u_1 = u_2 \)
 \[B^t \cos \Theta_0 = B^i \cos \Theta_i - B^r \cos \Theta_r \]

- Use Snell's Law \(\Rightarrow \Theta_i = \Theta_r \)

\[B^i = E^i \frac{n_1}{c} \quad B^r = E^r \frac{n_1}{c} \quad B^t = E^t \frac{n_2}{c} \]

\[\cos \Theta_i \frac{n_1}{c} (E^i + E^r) = \frac{n_2}{c} E^t \cos \Theta_t \]

amplitude of incident field + amplitude of reflected field + amplitude of transmitted field

If medium is lossless

TE: \(E^i + E^r = E^t \) (from Boundary conditions)

Solving for ratios of reflected & transmitted fields yields:

\[r_s = r_s = r_i = \frac{E^r}{E^i} = \frac{n_1 \cos \Theta_i - n_2 \cos \Theta_t}{n_1 \cos \Theta_i + n_2 \cos \Theta_t} \]

\[t_s = t_s = t_t = \frac{E^t}{E^i} = \frac{2n_1 \cos \Theta_i}{n_1 \cos \Theta_i + n_2 \cos \Theta_t} \]

OR alternate form

\[r_s = -\frac{\sin (\Theta_i - \Theta_t)}{\sin (\Theta_i + \Theta_t)} \quad t_s = +\frac{2 \sin \Theta_t \cos \Theta_i}{\sin (\Theta_i + \Theta_t)} \]

\[BC: E^i + E^r = E^t \quad H^i \cos \Theta_i - H^r \cos \Theta_r = H^t \cos \Theta_t \]
Alternate expressions (in terms of impedance)

From Electromagnetic Waves
Staelin/Morgenthaler/Kong

TE waves

\[\Gamma_{TE} = \frac{Z_{n,TE} - 1}{Z_{n,TE} + 1} \]

\[T_{TE} = \frac{2 Z_{n,TE}}{Z_{n} + Z_{n,TE}} \]

\[Z_{n,TE} = \text{normalized wave impedance} = \frac{U_t / k_t z}{u_i / k_i z} \]

\[k_{i z} = w \sqrt{u_i e_i} \cos \Theta_i \]

\[k_{t z} = \sqrt{k_t^2 - k_x^2} = \sqrt{w^2 u_t e_t - k_i^2 \sin^2 \Theta_i} \]

TM waves

\[\Gamma_{TM} = -\left(\frac{Y_{n,TM} - 1}{Y_{n,TM} + 1} \right) = \frac{E_{t,TM}}{E_{i,TM}} \]

\[T_{TM} = \frac{2}{Y_{n,TM} + 1} = \frac{E_{t,TM}}{E_{i,TM}} \]

\[Y_{n} = \frac{E_{t} / k_{t z}}{E_{i} / k_{i z}} \]
Deriving \mathbf{B} from \mathbf{E}

$\nabla \times \mathbf{E} = -j \omega \mathbf{B}$

For plane wave, this simplifies to

$\mathbf{k} \times \mathbf{E} = -\omega \mathbf{B}$

\begin{align*}
\begin{vmatrix}
\hat{x} & \hat{y} & \hat{z} \\
-k_z & k_y & k_z \\
0 & E_y & 0 \\
\end{vmatrix}
\end{align*}

$\mathbf{k} \times \mathbf{E} = \hat{x} (-k_z E_y) + \hat{y} (0 + \hat{z} k_x E_y) = -E_y (\hat{x} k_z + \hat{z} k_x)$

$k_x = k \sin \Theta$ \quad $k = \omega \sqrt{\mu} = \frac{\omega \eta}{c}$

$k_z = k \cos \Theta$

$\mathbf{k} \times \mathbf{E} = -E_y \frac{\omega \eta}{c} (\hat{x} \sin \Theta + \hat{z} \cos \Theta)$

$\mathbf{B} = E_y \frac{n}{c} (\hat{x} \sin \Theta + \hat{z} \cos \Theta)$

$|\mathbf{B}| = E_y \frac{n}{c} \sqrt{\sin^2 \Theta + \cos^2 \Theta} = E_y \frac{n}{c}$
Reflected & Transmitted Waves

(P polarization) (nonmagnetic \(n_1 = n_2 \))

\[
\begin{align*}
\Gamma_p &= \pm \frac{n_2 \cos \theta_t - n_1 \cos \theta_i}{n_2 \cos \theta_t + n_1 \cos \theta_i} \\
\Gamma_p &= \frac{R_p}{\tan (\theta_i - \theta_t)} \\
T_p &= \frac{R_p^2}{\tan (\theta_i + \theta_t)} \\
T_p &= \frac{t_{II}}{E_t} = (1 - R_p) \frac{\cos \theta_i}{\cos \theta_t}
\end{align*}
\]

Boundary conditions

\[\begin{align*}
&\text{tangential} \\
E_t &\cos \theta_t = E_r \cos \theta_r = E_t \cos \theta_t \\
&\text{continuity} \\
&H_t + H_r = H_t
\end{align*}\]

Conservation of Power

\[1 + \Gamma_p = \frac{t_{II}}{E_t} + \frac{n_2}{n_1} \frac{t_{II}}{E_t} = 1 + \Gamma_p \frac{n_2}{n_1} \]

Intensity \[I = \frac{n \varepsilon_0 c}{2} |E|^2, \text{ energy flux across boundary scaled by beam sectional area} \]

reflectance \[R = \frac{I_r}{I_i} = \frac{n_1 \varepsilon_0 c}{2} |E_r|^2 = \left| R \right|^2 \frac{\cos \theta_t}{\cos \theta_i} \]

transmittance \[T = \frac{I_t \cos \theta_t}{I_i \cos \theta_i} = \frac{n_2 \varepsilon_0 c}{2} |E_t|^2 \]

\[T = \frac{n_2 \cos \theta_t}{n_1 \cos \theta_i} \left| \frac{1}{E_t} \right|^2 \]

\[R + T = 1\]
Energy incident, reflected & transmitted per unit area given by component of Poynting vector normal to surface:

\[Q_i = S_i \cos \theta_i = \frac{n_1}{2n_0} |A_i|^2 \cos \theta_i \]

\[Q_r = S_r \cos \theta_r = \frac{n_1}{2n_0} |A_r|^2 \cos \theta_r \]

\[Q_t = S_t \cos \theta_t = \frac{n_2}{2n_0} |A_t|^2 \cos \theta_t \]

Brewster's Angle

Look for zero reflection cases, w/ \(\theta_r = \theta_i = \theta_t \)

TE: \(k_1 \cos \theta_i = k_2 \cos \theta_t \)

w/ Snell's Law

\(\tan \theta_i = \tan \theta_t \)

\(\Theta_i = \Theta_t \Rightarrow E_t = E_i \) (not interesting)
Tm waves (p polarization)

\[k_i \cos \Theta_i = k_t \cos \Theta_t \]

Thus, Snell's Law yields

\[\Theta_i + \Theta_t = \pi/2 \]

\[\tan \Theta_i = \tan \Theta_B = \sqrt{\varepsilon_t / \varepsilon_i} \]

\[\Theta_B = \text{Brewster's angle} = \tan^{-1} \sqrt{\varepsilon_t / \varepsilon_i} \]

when \(\omega_t = \omega_i \)

See slide on Brewster's angle

(lp. 155 of EM waves Staelin/Morgenthaler/Kung)

Geometry, when transmuted dipoles w/ polarization \(\vec{E}_t \) are parallel to reflected \(\vec{K}_t \)

(Dipoles do not radiate on axis)

Total Internal Reflection & Critical Angle

\(n_1 < n_2 < n_3 \)

At critical angle of incidence, transmitted wave is maximally bent away from normal & propagates \(\perp \) to boundary surface

\(\Theta_t = 90^\circ \)

\[\frac{\sin \Theta_i}{\sin \Theta_t} = \frac{n_i}{n_t} \quad (\text{Snell's Law}) \]

If \(\Theta_t = 90^\circ \)

\[\Theta_c = \sin^{-1} \left(\frac{n_t}{n_i} \right) \]

\(\Theta_i > \Theta_c, \quad k_{tx} > |k_t| \Rightarrow \text{not possible for real values of } k_t \)
Dispersion relation for transmitting medium:

\[k_t^2 = \omega^2 u_t \varepsilon_t = k_t x^2 + k_t z^2 \]

At \(\Theta_c \),

\[\Theta_t = 90^\circ, \ k_t z = 0, \ k_x = k_t x = \omega \sqrt{u_t \varepsilon_t} \]

For \(\Theta_i > \Theta_c \)

\[k_t z = k_t^2 - k_x^2 < 0 \]

\[k_t z = \pm j \sqrt{k_x^2 - k_t^2} = \pm j \alpha_z \]

where \(\alpha_z \) is a positive real quantity;

\(k_x = k_x i; \ k_t = \omega \sqrt{u_t \varepsilon_t} \)

\[-j k_t x - \alpha_z z \]

\[E_t = \hat{y} T E_i e \]

- Wave exponentially decays in 2nd medium \(\Rightarrow \) no average power transmitted in 2nd medium

\(\Rightarrow \) all incident light is reflected \(\Rightarrow \) total internal reflection (\(\Gamma_{TE} \) or \(\Gamma_{TM} = 1 \))

See slide on TIR

- Characteristic decay distance into 2nd medium \(< x_o/2 \)

\(n_1 > n_2 \)

S polarization (\(u_1 = u_2 \))

\[\cos \Theta_t = \frac{\sin \Theta_i}{n_2/n_1} \]

\[\frac{\cos \Theta_i - i \sqrt{\sin^2 \Theta_i - (n_2/n_1)^2}}{\cos \Theta_i + i \sqrt{\sin^2 \Theta_i - (n_2/n_1)^2}} = \frac{+ j \sqrt{\sin^2 \Theta_i - 1}}{\sin \Theta_i} \]
Goos-Hänchen Phase Shift

(Ret & Hau's Waves & Fields in Optoelectronics, Kang EM wave theory)

- Incident field reflects off TIR boundary with phase shift
- Incident & reflected light

\[E_1(x, z) = \begin{cases} E_0 \exp \left(-j(k_x x + k_z z) \right) \\ + E_0 \exp \left(-j(k_x x - k_z z - \delta) \right) \exp(-jwt) \end{cases} + \text{c.c.} \]

\[E_1(x, z) = 2 E_0 \cos(k_z z + \delta/2) \exp(-j(k_x x - wt - \delta/2)) \]

+ c.c.

- Transmitted light (continuity at boundary requires)

\[E_2(x, z) = \begin{cases} 2 E_1 \exp \left(-j \delta/2 \right) \cos(\delta/2) \\ \exp(-j\delta z) \exp(j(k_x x - wt)) \end{cases} \]

- Bigger phase shift for p than s since \(\delta \) is bigger

- Phase of Fresnel reflection coefficient at total internal reflection is

\[\Gamma = 1 - \exp(j2\delta) \]

\[\phi = \text{Goos-Hänchen shift} = \frac{1}{2} \arg(\Gamma^2) \]

(See slide on Goos-Hänchen shift)
\[|\rho_0|^2 = 1 \]
\[\rho_s = \frac{a - ib}{a + ib} \text{ (form)} = \frac{|1| e^{i\alpha}}{|1| e^{-i\alpha}} = e^{i2\alpha} \]

Phase: \[\tan^{-1} \left(\frac{b}{a} \right) = \frac{\delta_s}{2} \angle \text{angle} \]

\[\tan \left(\frac{\delta_s}{2} \right) = \frac{\text{Im} (a - ib)}{\text{Re} (a - ib)} = -\frac{\sqrt{\sin^2 \theta_i - (n_2/n_1)^2}}{\cos \theta_i} \]

\[P \text{ polarization} \]

\[\rho_p = \frac{n_2 \cos \theta_i - n_1 \cos \theta_t}{n_2 \cos \theta_i + n_1 \cos \theta_t} \]

\[\rho_p = \frac{(n_2/n_1)^2 \cos \theta_i - \sqrt{\sin^2 \theta_i - (n_2/n_1)^2}}{(n_2/n_1)^2 \cos \theta_i + \sqrt{\sin^2 \theta_i - (n_2/n_1)^2}} \]

Similar to \(s \) polarization:

\[\tan \left(\frac{\delta_p}{2} \right) = \frac{\text{Imaginary (Numerator)}}{\text{Real (Numerator)}} \]

\[= \frac{\sqrt{\sin^2 \theta_i - (n_2/n_1)^2}}{(n_2/n_1)^2 \cos \theta_i} \]

See slide on TIR

Relative Phase:

Difference between \(s \) & \(p \):

\[\delta = \delta_s - \delta_p \]

\[\tan \frac{\delta}{2} = \tan \frac{\delta_s}{2} - \tan \frac{\delta_p}{2} \]

\[1 + \tan \frac{\delta_s}{2} \tan \frac{\delta_p}{2} \]
\[\tan \frac{\delta}{2} = - \frac{\cos \theta i \sqrt{\sin^2 \theta i - \left(\frac{n_2}{n_1}\right)^2}}{\sin^2 \theta i} \]

For \(\theta > \theta_c \)

\[k_{te} = \pm j \sqrt{k_x^2 - k_t^2} = \pm j \, \alpha z \]
\[k_x = k_{x1} = k_0 n_1 \sin \theta i \]
\[k_t = k_0 n_2 \]
\[\pm j \, \alpha z = \pm j \, k_0 \sqrt{n_1^2 \sin^2 \theta i - n_2^2} \]
\[\pm j \, \alpha z = \pm j \, k_0 n_1 \sqrt{\sin^2 \theta i - \left(\frac{n_2}{n_1}\right)^2} \]

Compare w/ phase

\[\tan \frac{\delta_s}{2} = - \frac{\sqrt{\sin^2 \theta i - \left(\frac{n_2}{n_1}\right)^2}}{\cos \theta i} \]

\[= - \frac{\alpha z}{k_0 n_1 \cos \theta i} = - \frac{\alpha z}{k_i z} \]

\[\tan \frac{\delta_p}{2} = \frac{\sqrt{\sin^2 \theta i - \left(\frac{n_2}{n_1}\right)^2}}{\left(\frac{n_2}{n_1}\right)^2 \cos \theta i} \]

\[= \frac{\alpha z}{k_0 n_1 \left(\frac{n_2}{n_1}\right)^2 \cos \theta i} = \frac{\alpha z}{k_i z \left(\frac{n_2}{n_1}\right)^2} \]
Waves in Lossy Media

References: Griffiths, Intro to Electrodynamics; Kono, EM wave theory

\[\vec{E} = \sigma \vec{E}_0, \text{ no tensors (isotropic media)} \]

Rederive wave equation w/ loss

1) Curl of Faraday's Law

\[\nabla \times (\nabla \times \vec{E}) = -\mu \frac{d}{dt} (\nabla \times \vec{H}) \]

2) Substitute Ampère's Law

\[\nabla \times \vec{H} = \vec{G} + \frac{d\vec{D}}{dt} \]

\[\nabla \times (\nabla \times \vec{E}) = -\mu \frac{d}{dt} \left[\vec{G} + \frac{d\vec{D}}{dt} \right] \]

\[= -\mu \frac{d}{dt} \left[\sigma \vec{E} + \varepsilon \frac{d\vec{E}}{dt} \right] \]

3) Identity

\[\nabla \times \nabla \times \vec{A} = \nabla (\nabla \cdot \vec{A}) - \nabla^2 \vec{A} \]

no enclosed charge

\[\nabla (\nabla \cdot \vec{E}) - \nabla^2 \vec{E} = -\mu \sigma \frac{d\vec{E}}{dt} - \mu \varepsilon \frac{d^2\vec{E}}{dt^2} \]

\[\nabla^2 \vec{E} - \frac{\mu \varepsilon}{\varepsilon \sigma} \frac{d^2\vec{E}}{dt^2} - \mu \sigma \frac{d\vec{E}}{dt} = 0 \]

Wave equation with loss

Solution to wave equation with loss:

\[\vec{E}(z, t) = \hat{x} \vec{E}_0 \exp(-j(kz - \omega t)) + \text{CC} \]

\[= \hat{x} \vec{E}_0 \exp(-kz) \cos(k \omega t) \]

\[k^2 = \mu \varepsilon \omega^2 + j \sigma \omega \]

\[(0) \]
\[k = k_R + jk_I \]
\[k^2 = k_R^2 - k_I^2 + 2jk_I k_R \]

\[\Rightarrow \]
\[k_R^2 - k_I^2 = \omega^2 u \epsilon \] \hspace{1cm} (1)
\[2k_I k_R = \omega u \sigma \] \hspace{1cm} (2)

Square (1) and (2) and then adding yields:

\[(k_I^2 + k_R^2)^2 = (\omega^2 u \epsilon)^2 + (\omega u \sigma)^2 \]

\[k_I^2 + k_R^2 = \sqrt{(\omega^2 u \epsilon)^2 + (\omega u \sigma)^2} \]

Taking square root of (1) yields:

\[k_R = \omega \sqrt{u \epsilon} \left(\frac{1}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 u \omega^2}} + 1 \right) \right)^{1/2} \]

\[k_I = \omega \sqrt{u \epsilon} \left(\frac{1}{2} \left(\sqrt{1 + \frac{\sigma^2}{\epsilon^2 u \omega^2}} - 1 \right) \right)^{1/2} \]

Using electric field from previous page, magnetic field is:

\[\overline{H}(z,t) = \frac{\hat{y}}{u \mu} \frac{E_0}{\epsilon} \exp(-k_I z) \{ k_R \cos(k_R z - \omega t) \}
\]

Or

\[\overline{H}(z,t) = \frac{\hat{y}}{u \mu} \frac{k E_0}{\epsilon} \exp(-k_I z) \exp(-j(k_R z - \omega t)) \] + CC

Poynting vector power density is:

\[\overline{S}(r,t) = \frac{\hat{z}}{u \mu} \frac{E_0^2}{\epsilon} \exp(-2k_I z) \{ k_R \cos^2(k_R z - \omega t) - k_I \sin(k_R z - \omega t) \cos(k_R z - \omega t) \} \]
\[
\langle S(r, t) \rangle = \frac{1}{2\pi} \int_0^{2\pi} d(\omega t) \overline{E} \times \overline{H}
\]

Power density

\[
\langle S(r, t) \rangle = \frac{k_R}{\omega_0} E_0^2 \exp(-2k_Iz)
\]

Attenuating & propagating in \(z \) direction

Skin depth (distance it takes to reduce amplitude by factor (1/e)) \(\sim (1/\lambda) \)

\[
d = \frac{1}{k_I}
\]

- Measure of depth to which electromagnetic wave penetrates a good conductor
- Real part of propagation constant determines propagation speed & index of refraction

\[
\lambda = \frac{2\pi}{k_R}, \quad \nu = \frac{\omega}{k_R}, \quad \eta = \frac{c k_R}{\omega}
\]

- Consider 2 limiting cases

 Poor conductor

 \(\sigma \ll \omega \varepsilon \)

 \[
k_R \propto \omega \sqrt{\sigma} \quad k_I = \frac{\sigma}{2\sqrt{\varepsilon}}
\]
Good conductor \(\sigma > \omega \sigma \)

\[k_R \approx k_I = \sqrt{\frac{\omega \sigma}{\mu}} \]

Skin depth decreases with increasing frequency

\[d = \frac{\lambda}{2\pi} \] (skin depth)

Monochromatic plane waves in conducting media

\[k = k_R + jk_I = |k| e^{j\phi} \]

\[\phi = \tan^{-1} \left(\frac{k_I}{k_R} \right) \]

Complex amplitudes of \(E \) & \(H \) reveal that fields are no longer in phase and differ by \(\phi \):

\[E = \frac{\hat{E}_0}{|k|} e^{j\phi} \exp(j\omega t) \exp(jk_R z) \]

\[H = \frac{j\hat{E}_0}{\omega}\frac{1}{|k|} \exp(j\phi) \exp(jk_R z) \]

\[x \quad \hat{E} \quad \hat{H} \quad z \]

\[y \]
Reflection & Transmission at a Conducting Surface

Boundary conditions w/ surface charge & surface current

(i) \(e_1 E_{in} - e_2 E_{zn} = 0 \) surface charge

(ii) \(B_{in} = B_{2n} \)

(iii) \(E_{1t} = E_{2t} \)

(iv) \(\frac{B_{1t}}{u_1} - \frac{B_{2t}}{u_2} = H_{1t} - H_{2t} = \bar{q}_s \times \hat{n} \) surface current

Example (optional if lack of time)

\[
\begin{align*}
\overline{E}_t(z,t) &= \hat{y} \left\{ E_0 \exp \left(j \left(k_1 z - wt \right) \right) + cc \right\} \\
\overline{H}_t(z,t) &= \left(\hat{k} \times \hat{y} \right) \left\{ \frac{E_0 \exp \left(-j \left(k_1 z - wt \right) \right) + cc}{n_1} \right\} \\
\overline{E}_R(z,t) &= \hat{y} \left\{ E_{0R} \exp \left(-j \left(k_1 z - wt \right) \right) + cc \right\} \\
\overline{B}_R(z,t) &= - \left(\hat{k} \times \hat{y} \right) \left\{ \frac{E_{0R} \exp \left(-j \left(k_1 z - wt \right) \right) + cc}{n_1} \right\}
\end{align*}
\]
\[
\text{Transmitted}
\begin{align*}
E_T(z,t) &= \gamma \mathcal{E}_0 T \left\{ \exp \left(j \left(k z - \omega t \right) \right) + c_c \right\} \\
B_T(z,t) &= (\mathbf{k} \times \mathbf{E}) T \left\{ \frac{\mathcal{E}_0 T}{n_2^2} \exp \left(-j \left(k z - \omega t \right) \right) + c_c \right\}
\end{align*}
\]

Boundary conditions:

\[
\mathbf{E}_0 + \mathbf{E}_0 R = \mathbf{E}_0 T \quad \text{tangential } \mathbf{E} \text{ continues}
\]

\[
\frac{\mathbf{E}_0}{n_1} - \frac{\mathbf{E}_0 R}{n_1} - \frac{\mathbf{E}_0 T}{n_2} = 0 \quad \text{tangential } \mathbf{H} \text{ continues}
\]

\[
\mathbf{B} = \frac{\mathbf{u}_1 c \mathbf{k}_2}{n_1 u_2 w}, \quad k_2 \text{ is complex}
\]

\[
\Rightarrow \quad \Pi = \frac{\mathbf{E}_0 R}{\mathbf{E}_0} = \left(\frac{1 - B}{1 + B} \right) \quad \text{or use impedance definition of } \Pi
\]

\[
T = \frac{\mathbf{E}_0 T}{\mathbf{E}_0} = \frac{2}{1 + B}
\]

Perfect conductor

\[
\sigma = \infty \Rightarrow B = \infty
\]

\[
\mathbf{E}_0 R = -\mathbf{E}_0 \quad \mathbf{E}_0 T = 0
\]

Wave is totally reflected w/ \(\pi \) phase shift

Good conductor \(B \) so large

\[
\left(\frac{1 - B}{1 + B} \right) = \left(\frac{1 - \frac{1}{\mathcal{B}}}{1 + \frac{1}{\mathcal{B}}} \right) \approx \left(1 - \frac{1}{\mathcal{B}} \right)^2 \approx \frac{2}{\mathcal{B}} - 1
\]

\[
\mathcal{R} \approx 1 - \frac{2}{1 + \mathcal{B}^2}
\]
Plasma assembly of positive and negative charged particles where time-averaged charge density is zero.

Example: Neutralized gas; free electrons and positive ions.

- Ions are much heavier than electrons.
- Consider only interaction between EM wave and electrons.

\[\overline{\mathbf{J}} = N_q \overline{\mathbf{v}} \] electron velocity

\[\nabla \times \overline{\mathbf{B}} = \frac{\varepsilon_0}{\mu_0} \frac{\partial \overline{\mathbf{E}}}{\partial t} + \overline{\mathbf{J}} \]

Derive wave equation:

\[(\nabla^2 - \mu_0 \varepsilon_0 \frac{1}{\mu_0} \frac{\partial^2}{\partial t^2} - \mu_0 \frac{N_q e^2}{m}) \overline{\mathbf{E}} = 0 \]

Substitute:

\[\overline{\mathbf{E}}(z, t) = \mathbf{E}_0 \exp(-ik_I z) \cos(k_R^2 - \omega t) \]

Dispersion relation:

\[k_R^2 - k_I^2 = \omega^2 \mu_0 \varepsilon_0 (1 - \frac{\omega_p^2}{\omega^2}) \]

\[2k_R k_I = 0 \]

\[\omega_p = \sqrt{\frac{N_q e^2}{m \varepsilon_0}} \]

\[\omega > \omega_p \]

\[\begin{cases} k_R^2 = \omega^2 \mu_0 \varepsilon_0 (1 - \frac{\omega_p^2}{\omega^2}) \\ k_I = 0 \end{cases} \]
\[w < w_p \]

\[
k_I^2 = w^2 w_0 \xi_0 \left(\frac{w_p^2}{w^2} - 1 \right)
\]

\[k_R = 0 \]

Evanescent wave \(\Rightarrow \) no power flow!