Solution: Assume for ward active

a) \(I_c = \frac{V_{CC} - V_{CE}}{R_c} \)

\[I_c = \frac{10V - 3.2V}{6.8k\Omega} \]

\[I_c = 1mA \]

\(I_c = \frac{I_s \exp \left(\frac{V_{BE}}{V_T} \right)}{1mA} \)

Solve using given values.

\[V_{BE} = 690.8\text{mV} \]

b) \(V_{CE} = 0.3V \)

\[i_c = \frac{10 - 0.3V}{6.8k\Omega} = 1.617mA \]

To increase \(i_c \) from 1mA to 1.617mA

\(V_{BE} \) must increase

\[\Delta V_{BE} = V_T \ln \left(\frac{1.617}{1mA} \right) = 12\text{mV} \]

d) \(V_0 = 0.99 \) \(V_{CC} = 9.9V \)

\[i_c = \frac{10 - 9.9V}{6.8k\Omega} = 0.0147mA \]

To decrease \(i_c \) from 1mA to 0.0147mA

\(V_{BE} \) changes by

\[\Delta V_{BE} = V_T \ln \left(\frac{0.0147V}{1V} \right) = -105.5\text{mV} \]
Ex 6.4

Analyze circuit to determine all node voltages and currents

Assume NPN is forward biased.

1) $V_B = 4\, \text{V}$ $V_E = \text{ground through } R_E$

 Assume $V_{BE} = 0.7\, \text{V}$

 $V_E = 4\, \text{V} - V_{BE} = 4 - 0.7\, \text{V} = 3.3\, \text{V}$

2) $I_E = \frac{3.3\, \text{V} - 0\, \text{V}}{3.3\, \text{k}\Omega} = 1\, \text{mA}$

3) It is possible that $V_C > V_B$ (Collector connected to 10V power supply)

 Needed for active mode. Assume active mode & check later

 $I_C = \alpha I_E$

 $\alpha = \frac{B}{(B+1)} = \frac{100}{101} = 0.99$
Ex 6.4 (contin)

1) $I_c = (0.99 \times 1\text{mA}) = 0.99\text{mA}$

4) $V_c = 10 - I_cR_c = 10 - (0.99\text{mA}) (4.7\text{k})$
 \[= +5.3\text{V}\]

 Check $V_B = 4\text{V} \Rightarrow V_c > V_B \Rightarrow$ reverse biased

 so forward active assumption good

5) $I_B = \frac{I_E}{B+1} = \frac{1\text{mA}}{101} = 0.01\text{mA}$

Ex 6.5

- Same as 6.4
 - EXCEPT
 1) Base @ 6V
 2) $B \geq 50$

Reminder = DC problems

1) Determine or assume regime of operation
 2) V_{BE}, $I_{CE} = 0.7\text{V}$
 3) V_{CE} edge of sat = 0.3V
 V_{CE} sat = 0.2V

1) $V_B = 6\text{V}$
 $V_E = ?$
 Assume forward bias
\[V_E = 6V - V_{BE} \]
\[= 6 - 0.7V = 5.3V \]
\[I_E = \frac{5.3V}{3.3k} = 1.6mA \]

2) \[I_C = \alpha I_E = I_E \]

\[V_C = 10V - (4.7k\Omega)(1.6mA) = 2.48V \]

3) \[V_C < V_B \Rightarrow \text{not active mode} \]

- transistor in saturation!

a) \[V_E \& I_E \text{ are correct} \]

\[V_E = 5.3V \quad I_E = 1.6mA \]

b) \[V_C = V_E + V_{cesat} = 5.3V + 0.2V = 5.5V \]

c) \[I_C = \left(\frac{10-5.5V}{4.7k\Omega} \right) = 0.96mA \]

d) \[I_B = I_E - I_C = 1.6mA - 0.96mA = 0.64mA \]

\[B_{F(urd)} = \frac{I_C}{I_B} = \frac{0.96mA}{0.64mA} = 1.5 < 50 \]

\[\Rightarrow \text{saturate} \]
Example 4.8

Analyze the circuit to determine voltages at all nodes and currents in branches. \(B = 100 \)

1. Assume BE is forward biased.
 \[I_B = \frac{5 - V_{BE}}{R_B} = \frac{5 - 0.7V}{100k} = 0.043mA \]

2. Assume active mode.
 \[I_C = B I_B = 100 \times 0.043mA = 4.3mA \]

3. \(V_C = 10 - I_C R_C = 10V - (4.3mA)(2k) = 1.4V \)

3b) \(I_E = \frac{I_C}{\alpha} = 4.349mA \)

4. \(V_B = V_{BE} = 0.7V \)

\(V_C > V_B \), CB is reverse biased and active mode assumption is correct.
Collector & emitter currents depend critically on B.

If B is 10% higher, transistor would be saturated ⇒ bad design

Ex 6.10

Simplify with

Thevenin theorem

\[V_{BB} = \frac{15R_{B2}}{R_{B1} + R_{B2}} = 5V \]

\[R_{BB} = R_{B1} \parallel R_{B2} = 33.3k\Omega \]

\[V_{BB} = I_B R_B + V_{BE} + I_E R_E \]

Assume active mode operation
Replace \(I_B \) with \(I_E / (B+1) \)

\[
I_E = \frac{V_{BB} - V_{BE}}{R_E + \frac{B\cdot V_{BB}}{B+1}}
\]

\[
I_E = \frac{(5 - 0.7V)}{3 + 33.3/101} = 1.29 \text{ mA}
\]

\[
I_B = \frac{1.29}{101} = 0.0128 \text{ mA}
\]

\[
V_B = V_{BE} + I_E R_E
\]

\[
= 0.7V + (1.29 \text{ mA})(3k) = 4.57V
\]

\[
I_C = \alpha I_E = 0.99 (1.29 \text{ mA}) = 1.28 \text{ mA}
\]

\[
V_C = 15 - I_C R_C = 5 - (1.29 \text{ mA})(5k)
\]

\[
= 8.16V
\]

\(V_C > V_B \) \text{ so active mode assumption is correct}
Q1 Part of circuit identical to example 6.10 assume Q1 in active mode and use values from previous example

\[V_{B1} = +4.57 \, \text{V} \quad I_{E1} = 1.29 \, \text{mA} \]
\[I_{B1} = 0.0128 \, \text{mA} \quad I_{C1} = 1.28 \, \text{mA} \]

> However \(V_{C1} \) will be different
> Assume \(I_{B2} < I_{C1} \) & current through \(R_{C1} \approx I_{C1} \)
> \(V_{C1} \approx 15 - I_{C1} R_{C1} = 4.5V - (1.28 \, \text{mA})(5 \, \text{k}\Omega) \)
 \[= 8.16 \, \text{V} \]

\[\Rightarrow \text{Thus Q1 in active mode} \Rightarrow V_{C1} > V_{B1} \]

Q2 \[V_E > V_B \Rightarrow \text{forward biased} \]
\[V_{E2} = V_{C1} + 0.7V = 8.16V + 0.7V = 9.3V \]
\[I_{E2} = \frac{15 - V_{E2}}{R_{E2}} = \frac{15 - 9.3V}{2\,\text{k}\Omega} = 2.85 \, \text{mA} \]
Assume active mode
\[I_{C2} = I_{E2} \times 0.99 \times 2.85 \, \text{mA} \]
\[= 2.82 \, \text{mA} \]

\[V_{C2} = I_{C2} R_2 = (2.82 \, \text{mA})(2.4 \, \text{k}\Omega) \]
\[= 7.012 \, \text{V} \]
\[V_{C2} < V_{B2} \Rightarrow \text{active mode assumption is fine} \]
Find error in calculations from neglecting I_{B2}.

\[I_{B2} = \frac{I_{E2}}{B+1} = \frac{2.85 \text{mA}}{101} = 0.028 \text{mA} \]

$I_{B2} \ll I_{c1}$

If include I_{B2} in calculations (iterate once more):

\[I_{RC1} = I_{c1} - I_{B2}, \text{ assume } I_{B2} = 0.028 \text{mA} \]

\[= 1.28 \text{mA} - 0.0028 \text{mA} = 1.252 \text{mA} \]

\[V_{c1} = 15 - (5 \text{k} \Omega)(1.252 \text{mA}) = 8.74 \text{V} \]

\[V_{E2} = 8.74 \text{V} + 0.7 \text{V} = 9.44 \text{V} \]

\[I_{E2} = \frac{15 \text{V} - 9.44 \text{V}}{2k} = 2.78 \text{mA} \]

\[I_{c2} = 0.99(2.78 \text{mA}) = 2.75 \text{mA} \]

\[V_{c2} = (2.75 \text{mA})(2.7 \text{k}\Omega) = 7.43 \text{V} \]

\[I_{B2} = \frac{2.78 \text{mA}}{101} = 0.00275 \text{mA} \]

7.1.0.2 Obtaining a voltage amplifier

BJT as amplifier, voltage (VBE) controlled current source.
Voltage transfer characteristic

For small \(U_{BE} \) (i.e. \(U_{BE} < 0.5V \))

\[i_c = 0 \quad \text{and} \quad V_o = V_{cc} \ (X-Y \ \text{segment}) \]

For \(U_{BE} > 0.5V \), BE forward biased and initial \(V_o \) to large active mode

\[V_o = V_{cc} - R_c I_s \exp\left(\frac{V_i}{V_T}\right) \quad \text{Y-Z segment} \]

When \(V_o < V_i - 0.4V \)

\(\Rightarrow \) saturation (point Z)

\(V_o \) is almost constant

\[V_o = \frac{V_i}{V_{ce \ \text{sat}}} \quad I_{c \ \text{sat}} = \frac{V_{cc} - V_{cesat}}{R_c} \]
7.1.4 Amplifier Gain

Amplifier is in active mode from circuit above

1) Bias at point \(Q \) quiescent point

2) Superimpose small signal on top of \(U_{BE} \)

I) DC Bias point
\[
I_C = I_S \exp \left(\frac{U_{BE}}{V_T} \right)
\]
\[
U_{CE} = V_{CC} - R_C I_C
\]

II) Superimpose small signal on top of \(U_{BE} \)

Amplifier gain determined by slope of transfer characteristics
\[
A_V = \left. \frac{\Delta V_O}{\Delta V_I} \right|_{V_I = U_{BE}} = -\frac{1}{V_T} I_S \exp \left(\frac{U_{BE}}{V_T} \right) R_C
\]
\[Av = -\frac{IcRc}{VT} = -\frac{V_{RC}}{VT} \]

where \(V_{RC} = V_{CC} - V_{CEO} \)

- \(Av < 0 \Rightarrow \text{inverting amplifier} \)
- \(\uparrow Av \text{ when } \uparrow V_{RC} \Rightarrow \text{need larger } Ic \Rightarrow \text{need larger } U_{BE} \)
- Pushing Q too close to Y lowers gain & clips off positive peak
- Theoretical max \(Av \) occurs at z point

\[Av = -\frac{(V_{CC} - V_{CE\text{sat}})}{VT} \approx -\frac{V_{CC}}{VT} \]

\[\text{Example} \]

V\(_{CC} = 10V\]

\[Ic = 1mA \]
\[Av = -320V/V \]

1. Find value of \(R_c \) corresponding to this

\[Ic = \frac{V_{CC} - V_{CE}}{RC} \]
\[Av = -\frac{IcRc}{VT} \Rightarrow R_c = \frac{AvVT}{Ic} \]
\[R_c = \frac{(-320V/V) (0.025V)}{1mA} = 8k\Omega \]
What is the largest negative signal allowed at output
\(V_{ce} \geq 0.3V \)

\[
V_{ce} \mid i = 1mA, R_c = 8k\Omega = 2V
\]

largest swing allowed = 1.7V

2. Corresponding signal amplitude

\[
A_v = \frac{V_o}{V_i}
\]
\[
\Delta V_i = \frac{\Delta V_o}{A_v} = \frac{1.7V}{320V/V} = 5.3mV
\]

Can use graphical analysis to determine voltage transfer function

7.2.2 Small Signal operation & model

Valid for active mode!

1. DC analysis

\[
V_{be} = 0
\]
\[
I_C = I_S \exp \left(\frac{V_{BE}}{V_T} \right)
\]
\[
I_E = I_C / \alpha
\]
\[
V_{CE} = V_{CC} = V_{CC} - I_C R_C
\]
2. Add V_{be} (small signal)

$$V_{BE} = V_{BE} + V_{be}$$

$$i_c = I_s \exp \left(\frac{V_{BE}}{V_T} \right)$$

$$= I_s \exp \left(\frac{V_{BE}}{V_T} \right) \exp \left(\frac{V_{be}}{V_T} \right)$$

$$= I_c \exp \left(\frac{V_{be}}{V_T} \right)$$

$$i_c \approx I_c \left(1 + \frac{V_{be}}{V_T} \right)$$ \quad V_{be} \ll V_T$$

Valid for $V_{be} < 10 \text{mV}$, small signal approximation

Small signal approximation

$$i_c = I_c + i_c$$ \quad \text{where } i_c = \frac{I_c}{V_{be}}$$

$$i_c = g_m V_{be}$$

$$g_m = \frac{I_c}{V_T} \quad \text{transconductance}$$

For constant g_m, need constant I_c

g_m of BJT tends to be higher than that of MOSFET

$$g_m = \frac{\delta i_c}{\delta V_{BE}} \mid i_c = I_c$$

Small signal approx keeps signal amplitude small so that restricted to almost linear portion of
Input resistance at base (forward active)

\[i_B = \frac{i_C}{B} = \frac{I_C}{B} + \frac{I_c}{B} \left(\frac{U_{be}}{V_T} \right) \]

\[i_B = I_B + i_b \]
\[i_b = \frac{I_C}{B} \frac{U_{be}}{V_T} = \frac{g_m}{B} U_{be} \]

Small signal resistance looking between B & E, looking into base

\[R_{TI} = \frac{U_{be}}{i_b} = \frac{B}{g_m} = \frac{BV_T}{I_C} = \frac{V_T}{I_B} \]

Input resistance at emitter

\[i_E = \frac{i_C}{\alpha} = \frac{I_C}{\alpha} + \frac{i_c}{\alpha} \Rightarrow i_E = I_E + \frac{i_c}{\alpha} \]

\[I_E = \frac{I_C}{\alpha} \]
\[i_e = \frac{i_c}{\alpha} \]
\[i_e = \frac{I_C}{\alpha} \frac{V_{be}}{\alpha V_T} \]
\[U_{be} = \frac{I_E}{V_T} U_{be} \]

Input signal resistance looking back into emitter

\[R_e = \frac{U_{be}}{i_e} = \frac{1}{I_E} \Rightarrow U_{be} I_E = \frac{I_C}{\alpha} \]

\[R_e = \frac{\alpha}{g_m} = \frac{1}{g_m} \]

\[g_m = \frac{I_C}{V_T} \]
relationship between $\beta \pi$ and R_e

$V_{be} = i_{b0}$

$\beta \pi = i_e R_e$ (added)

$\beta \pi = (\beta + 1) R_e$

Voltage gain

$V_o = V_c = V_{cc} - i_c R_c$

$= V_{cc} - (i_c + i_e) R_c$

Signal component

$V_c = -i_c R_c$

$= -g_m V_{be} R_c$

$= (-g_m R_c) V_{be}$

Voltage gain

$A_v = \frac{V_c}{V_{be}} = -g_m R_c = \frac{-i_c R_c}{V_T}$

Hybrid π model

$g_m = \frac{I_c}{V_T}$

$\beta \pi = \frac{B}{g_m}$
Obvious

\[i_c = g_m V_{be} \quad i_b = \frac{V_{be}}{r_{\pi}} \]

Not so obvious

\[i_e = \frac{V_{be}}{r_{\pi}} + g_m V_{be} = \frac{V_{be}}{r_{\pi}} \left(1 + g_m r_{\pi} \right) \]

Alternate version

\[g_m V_{be} = g_m \left(i_b r_{\pi} \right) = B i_b \]

I model

> Hybrid \(\Pi \) is most popular

\[g_m = \frac{I_c}{V_T} \]

\[r_e = \frac{V_T}{I_e} \]
Alternative

\[i_b = \frac{U_{be}}{R_e} - Gm U_{be} \]
\[= \frac{U_{be}}{R_e} (1 - Gm R_e) \]
\[= \frac{U_{be}}{R_e} (1 - \alpha) \]
\[= \frac{U_{be}}{R_e} \frac{1}{1 + B} = \frac{U_{be}}{R_{\Pi}} \]

\[Gm U_{be} = Gm i_e R_e = \alpha i_e \]

PNP is same as NPN \(\Rightarrow \) no change with polarity

Small signal analysis

1) DC analysis \(\Rightarrow \) Find all node voltages and currents

2) Calculate small signal parameters
\[Gm / R_{\Pi} / R_e \]

3) Eliminate all DC sources, replace BJT with equivalent circuit model

4) Analyze equivalent circuit, find voltage gain, \(R_{in} \) and \(R_{out} \)
Determine voltage gain of amplifier

1. DC analysis
 \(V_i = 0 \)
 \[
 I_B = \frac{3 - 0.7V}{100k} = 0.023mA
 \]

 Amplifier \(\Rightarrow \) Assume forward active
 \[
 I_C = B \times I_B = 21.3mA
 \]
 \[
 V_C = 10V - (3k\Omega)(21.3mA) = 3.1V
 \]
 \(V_C > V_B \Rightarrow \) Forward active!

2. Small signal parameters
 \[
 R_e = \frac{V_T}{I_T} = \frac{0.025V}{(I_C/I_d)}
 \]
 \[
 = \frac{6.025V}{(21.3mA/0.99)} = 10.85k\Omega
 \]
 \[
 R_{\pi} = \frac{B}{g_m} = \frac{100}{92mA/V} = 1.09k\Omega
 \]
3. Draw small signal model

\[V_{be} = \frac{V_i \cdot \frac{1}{R_T}}{R_T + 100k\Omega} = V_i \left(\frac{1.09k\Omega}{1.09k\Omega + 100k\Omega} \right) \]

\[V_{be} = 0.011V_i \]

Output voltage \(V_0 = -g_m V_{be}(3k\Omega) \)

\[\frac{V_0}{V_i} = -\left(9.2 \text{ mA/V}\right)\left(0.011\right)\left(3k\Omega\right) \]

\[= -3.04 \text{ V/V} \]

7.3 3 Basic types amplifier

CE (Common emitter) CB (Common base)
7.5.2 Common Emitter with biasing

Signal ground established by C_e (μF) bypass cap \Rightarrow acts like short for signal

Coupling caps C_{c1} & C_{c2} block DC, act like short for AC signal
\[R_{in} = \frac{V_i}{i_i} = R_B \parallel R_T \approx R_T \quad \text{when } R_B \gg R_T \]

\[R_{in} \sim \text{few kΩ} \quad \text{low} \rightarrow \text{moderate} \]

\[V_i = V_{sig} \frac{R_{in}}{R_{in} + R_{sig}} = V_{sig} \left(\frac{R_B \parallel R_T}{R_{sig} + R_B \parallel R_T} \right) \]

\[V_i = V_T \]

\[V_o = -g_m V_T \left(R_0 \parallel R_C \parallel R_L \right) \]

\[A_V = \frac{V_o}{V_i} = -g_m \left(R_0 \parallel R_C \parallel R_L \right) \]

\[A_{V0} = \frac{V_o}{V_i} \bigg|_{R_L=\infty} = -g_m \left(R_0 \parallel R_C \right) \]

Effect \(R_0 \) \(\Rightarrow \) reduce gain

\[A_V = A_{V0} \left(\frac{R_L}{R_L + R_0} \right) \]

Typically, \(R_0 \gg R_C \)
reduce \(A_V \)
slightly.

\[R_0 \gg R_C \]
\[A_V \approx -g_m R_C \]
Overall voltage gain:

\[G_v = \frac{- (R_{B11} R_{T1})}{(R_{B11} R_{T1}) + R_{sig}} G_m \left(R_{o11} R_{ch11} R_{L} \right) \]

when \(R_B \gg R_{T1} \):

\[G_v \approx \frac{-B \left(R_{c11} R_{ch11} R_{o} \right)}{R_{T1} + R_{sig}} j R_{B11} R_{T1} R_{T1} \]

If \(R_{sig} \gg R_{T1} \), \(B \times B \) not desirable as wide variation in \(B \)

If \(R_{sig} \ll R_{T1} \), \(G_v = -G_m \left(R_{c11} R_{ch11} R_{o} \right) = A \nu \)

\(G_v \& A \nu \) can reach few hundred (significant gain)

Short circuit current gain:

\[i_{os} \mid R_L=0 = -G_m V_{T1} \]

\[V_{T1} = V_i = i; R_{in}; A_{is} = \frac{i_{os}}{i_{is}} = -G_m R_{in} \]

Limited by high frequency.

If \(R_B \gg R_{T1} \), \(A_{is} = -G_m \left(R_{T1} \| R_B \right) \)

\[\alpha = -G_m R_{T1} = B \]
Common emitter with emitter resistance
Small Signal Model

\[R_{in} = R_B \parallel R_{ib} \]
\[R_{ib} = \frac{V_i}{i_b} \quad \text{(Input resistance)} \]

\[i_{ib} = (1 - \alpha) i_e = \frac{i_e}{B+1} \]
\[i_e = \frac{V_i}{(R_e + R_e)} \]
\[R_{ib} = \frac{V_i}{i_e} (B+1) = \frac{V_i}{(R_e + R_e)} (B+1) \]

* Resistance reflection rule because \[i_e = (B+1) i_b \]

Inclusion of \(R_e \) substantially increases \(i_b \)

- Can use \(R_e \) to control \(R_{in} \) if \(R_B \) is dominated by \(R_{ib} \) (\(i_e R_B \gg R_{ib} \))

At output \[V_o = -i_e (R_{ch} R_L) = -\alpha i_e (R_{ch} R_L) \]

Since \[i_e = \frac{V_i}{(R_e + R_e)} \]
\[V_o = \frac{-\alpha (R_{ch} R_L)}{R_e + R_e} V_i \]

\[A = \frac{-\alpha (R_{ch} R_L)}{R_e + R_e} \]
\[A_v = \frac{-\alpha R_C}{Re + Re} \]

\[Re = \frac{\alpha}{g_m} \quad A_v = \frac{-g_m R_C}{1 + Re/Re} = \frac{-g_m R_C}{1 + (g_m R_C / \alpha)} \]

\[R_o = R_C; \text{ the only resistance in output} \]

To find \(A_{in} \)

\[i_{os} = -\alpha i_e \]
\[i_i = \frac{V_i}{R_{in}} \]
\[A_{is} = -\alpha \frac{R_{in} i_e}{V_i} \]

Since \(i_e = \frac{V_i}{Re + Re} \) \quad \(R_{in} = R_B || R_{ib} \)

\[A_{is} = -\alpha \left(\frac{R_B || R_{ib}}{Re + Re} \right) \]

When \(R_B > R_{ib} \Rightarrow A_{is} \approx -\alpha \frac{R_{ib}}{Re + Re} \)

\[A_{is} \approx -\alpha \frac{(R_B+1)(Re + Re)}{(Re + Re)} \]

\[A_{is} \approx -B \]

Overall voltage gain

\[G_v = \frac{V_i}{V_{sy}} \quad A_v = \left(\frac{-R_{in}}{R_{sy} + R_{in}} \right) \left(\frac{\alpha R_C || R_{ib}}{Re + Re} \right) \]

If \(R_B > R_{ib} \Rightarrow R_{in} \approx R_{ib} = (1+B)(Re + Re) \)

\[G_v \approx \frac{-B (R_C || R_{ib})}{R_{sy} + (B+1)(Re + Re)} \]
Gain is lower than common emitter amplifier \(\text{w}10\text{ Re}, \text{but less sensitive to B}\)

- Common emitter amplifier \(\text{w}1\text{ Re}\) can also handle large input signal up to distortion \(\text{b/c only a fraction of } V_i \text{ appears across base/emitter}\)

\[
\frac{V_{\pi}}{V_i} = \frac{R_e}{R_e + R_e} = \frac{1}{1 + g_m R_e}
\]

Summary of Common Emitter amplifier

\(\text{w}1\text{ Re} \text{ compared w/ CE w/o Re}\)

1) \(R_h\) increased by \((1+g_m R_e)\)

2) \(A_v\) reduced by \((1+g_m R_e)\)

3) For same NL distortion \(V_i\) can be increased by \((1+g_m R_e)\)

4) \(G_v\) less sensitive to B

5) High frequency response better

6) Negative feedback

\[+ i_c \Rightarrow + u_e \Rightarrow - V_i\]
7.5.4 Common Base Amplifier

\[Vcc \]
\[\begin{array}{c}
Rc \\
\end{array} \]
\[V_0 \]
\[\begin{array}{c}
R_L \\
\end{array} \]
\[R_0 \]
\[\text{Ignore } R_0 \]
\[\text{Use } T \text{ model} \]

Small Signal Model

\[R_{in} = R_e \sim \text{a few ohms}, R_{in} \text{ very low} \]

\[V_0 = -\alpha V_i (R_c + R_L) \]

\[i_e = -\frac{V_i}{R_e} \]
\[AV = \frac{V_0}{V_i} = \frac{\alpha}{R_e} (R_c + R_L) \]
\[A_v = G_m (R_c || R_L) \]

* non inverting, otherwise same as CE

\[A_v = G_m \frac{R_c}{R_L} \quad \text{Same as CE} \]

\[R_o = R_c \quad \text{same as CE} \]

\[A_{is} = \frac{-X_{ie}}{i_i} = \frac{-X_{ie}}{-ie} = \alpha \quad \text{common base current gain} \]

\[G_v = \frac{R_e}{R_g + R_e} \quad G_m (R_c || R_L) \]

\[G_v = \frac{\alpha (R_c || R_L)}{R_g + R_e} \approx \frac{R_c || R_L}{R_g + R_e} \]

- \(G_v \) proportional to ratio of resistance in collector to that of emitter \(\Rightarrow \) not dependent on \(B \) \(\Rightarrow \) very desirable

- \(R_g \approx R_c \& R_L \) gain very small

- Boax, cubic amplifier - need low Rin for min reticron

- Current buffer (unity gain current amplifier) delivers same current from low input R to high R output circuit
Summary of Common Base Amplifier

- Low input R
- Open circuit gain = 1/|CE|
- High output R (Rc)
- Low overall voltage gain

7.5.5 Emitter follower or common collector (Section 7.8.5, letted)

Use T model
Apply resistance reflection rule

\[i_b = (1 - \alpha) i_e = \frac{i_e}{B+1} \]

\[R_{ib} = \text{input resistance} = (B+1) \left[R_e + R_{11RL} \right] \]

\[R_{in} = R_B \parallel R_{ib} \]

Emitter follower presents increased resistance to source. To fully realize RB

\[R_B \text{ must be high} \]

\[A_V = \frac{R_{L11R_0}}{R_{011RL} + R_e} \]

\[A_{V0} = A_V \bigg|_{R_L = \infty} \approx 1 \]

\[G_V = \left(\frac{R_{b11R_{ib}}}{R_{b11R_{ib}} + R_{sg}} \right) \left(\frac{R_{L11R_0}}{R_{011RL} + R_e} \right) \]

\[G_V = \left(\frac{R_B (B+1) \left[R_e + R_{11RL} \right]}{R_B (B+1) \left[R_e + R_{11RL} + R_{sg} \right]} \right) \left(\frac{R_{L11R_0}}{R_{011RL} + R_e} \right) \]

\[G_V < 1 ! \]

Simplifying, for \(R_B \gg R_{sg} \) & \(R_e \gg R_L \)

\[\frac{V_o}{V_{sg}} = \frac{R_L}{R_{sg} + R_e + R_L} \]

\[G_V \rightarrow 1 \text{ when } R_{sg} \ll (B+1) R_L \]
Butterfly action \Rightarrow short circuit current gain approaches $B+1$

\[G_{vo} = G_v \left|_{RL=\infty} \right. \approx \left(\frac{R_B}{R_S + R_B} \right) \left(\frac{R_o}{R_S + R_B + r_o + r_e} \right) \]

\[R_o \left|_{vi=0} \right. = R \parallel r_e \]

Emitter follower
- R_{in} high, R_o low, $G_v \approx 1$

Summary

<table>
<thead>
<tr>
<th>Amplifier Type</th>
<th>R_{in}</th>
<th>R_{out}</th>
<th>A_v / G_v</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE</td>
<td>moderate</td>
<td>large</td>
<td>Large</td>
</tr>
<tr>
<td>CE w/Re</td>
<td>increase R_{in}</td>
<td>large</td>
<td>Smaller</td>
</tr>
<tr>
<td>CB</td>
<td>small</td>
<td>large</td>
<td>$\text{large } A_v$ Small G_v unity gain current amp.</td>
</tr>
<tr>
<td>CE emitter follower</td>
<td>high</td>
<td>low</td>
<td>$A_v \approx 1$, voltage buffer connect high R source to low R load.</td>
</tr>
</tbody>
</table>