Scientific Report No. 91

A GENERALIZED EDGE BOUNDARY CONDITION
FOR OPEN MICROSTRIP STRUCTURES

by

Thomas M. Martinson and Edward F. Kuester

Electromagnetics Laboratory
Department of Electrical and Computer Engineering
University of Colorado
Boulder, Colorado 80309

August 1987

This research was supported by the U.S. Office of Naval Research (ONR) under Contract No. N00014-88-K-0417.
ABSTRACT

A generalized edge boundary condition (GEBC) relating the tangential electric and magnetic fields at the edge of an arbitrarily shaped microstrip patch antenna on thin substrate is developed. This boundary condition incorporates the dynamical edge effects and the coupling over the patch. Based on this edge condition, commonly used microstrip patches can be accurately and efficiently analyzed. Using perturbation theory, resonant frequencies and Q-factors can be readily determined for simple patch shapes. Rectangular and circular microstrip antennas are analyzed in detail, and calculated results are compared with previously published experimental data.
1. INTRODUCTION

In the last decade, many analysis techniques have been applied to microstrip patch antennas. Numerical approaches such as full-wave analysis [1], and direct solution of the exact integral equation for the patch current [2]-[5] can provide the needed accuracy for many designs. However, lengthy computing times limit the applicability of such numerical techniques. On the other hand, models relying strongly on the physics of the problem, such as the transmission line model [6]-[8] and the cavity model [9]-[11], have been extensively used for simple patch shapes. In these two models, fields are reckoned under the patch and obey a transmission-line equation and a two-dimensional Helmholtz equation respectively. One of the main difficulties faced by these simple analysis techniques, is the accurate determination of the condition that the field must satisfy at the edge of the patch. This boundary condition, directly related to the fringing of the field, plays a crucial role in the accuracy of the analysis.

We will develop here a generalized edge boundary condition (GEBC) at the edge of an arbitrarily shaped microstrip patch antenna on electrically thin substrate (kd<<1). This boundary condition will include the effects of the coupling over the patch, radiation waves and surface waves.

First we set up an aperture field integral relation (AFIR) in the region extending from the edge of the patch to infinity at the air-dielectric interface. Second, we derive an integral expression for the tangential magnetic field at the edge of the patch and combine this relation with the AFIR. Third, the field distribution close to the edge is approximated by an equivalent static distribution multiplied by an amplitude factor dependent on position along the edge. Finally, we accurately approximate the kernel of our integral relation so as to isolate known static field integrals. The result is an expression for the tangential magnetic field at a given point along the edge as a function of the tangential magnetic field and the vertical electric field around the patch. This expression, or GEBC, allows two interesting applications. First, we derive a segmented version of the GEBC, useful for the analysis of arbitrarily shaped microstrip patches. Second, we develop a perturbation approach to analyze efficiently and accurately simple patch resonators. The time convention $e^{j\omega t}$ is used throughout.

2. APERTURE FIELD INTEGRAL RELATION

In contrast to most integral equation formulations [2]-[5], that set up an integral equation on the surface of the patch, we will derive an aperture field integral relation (AFIR) at the air-dielectric interface away from the patch. This approach bears some resemblance with one used a few years ago by Butler for the circular patch [12].

Consider the geometry of an arbitrarily shaped patch antenna illustrated in Fig. 1. A local coordinate system $(\hat{a}_x,\hat{a}_y,\hat{a}_z)$ is introduced everywhere along the edge of the patch. Let also S_C denote the surface of the conducting patch and S_A denote the aperture surface complement of S_C at $z=d$.
In a homogeneous source-free region, let G be the Green function solution of

$$[\nabla^2 + k^2] G = -\delta(\mathbf{r} - \mathbf{r}')$$

(1)

where $k = k_0(\varepsilon, \mu, \omega)^{\frac{1}{2}}$ and $k_0 = \omega(\varepsilon_0 \mu_0)^{\frac{1}{2}}$ is the free space wavenumber. Let \hat{e} be any constant vector. If we denote the scattered magnetic field by \vec{H}^s, we have the following integral relation, variant of a formula given by Harrington [13]:

$$\hat{e} \cdot \vec{H}^s(\mathbf{r}) = -\oint_S d\mathbf{s}' \cdot \left(\vec{H}^s \times (\nabla' \times e\mathbf{G}) - e\mathbf{G} \times (\nabla' \times \vec{H}^s) + \vec{H}^s(\nabla' \cdot e\mathbf{G}) \right)$$

(2)

Since \hat{e} is a constant vector:
\[\nabla \times G \dot{\varepsilon} = \nabla G \times \dot{\varepsilon} \]
\[\nabla \cdot G \dot{\varepsilon} = \dot{\varepsilon} \cdot \nabla G \]

Also, the corresponding source-free Maxwell equation gives the curl of the magnetic field:
\[\nabla' \times \vec{H}' = i \omega \varepsilon_0 \varepsilon, \vec{E}' \]

We therefore write directly
\[\dot{\varepsilon} \cdot \vec{H}'(\vec{r}) = \oint \frac{d\vec{s}'}{S} \cdot \left\{ (\vec{H}' \times (\dot{\varepsilon} \times \nabla' G)) + i \omega \varepsilon_0 \varepsilon, G(\dot{\varepsilon} \times \vec{E}') - \vec{H}'(\dot{\varepsilon} \cdot \nabla' G) \right\} \]

We also can expand
\[\vec{H}' \times (\dot{\varepsilon} \times \nabla' G) = (\vec{H}' \cdot \nabla' G) \dot{\varepsilon} - (\vec{H}' \cdot \dot{\varepsilon}) \nabla' G \]

and thus (3) becomes
\[\dot{\varepsilon} \cdot \vec{H}'(\vec{r}) = \]
\[\oint \frac{d\vec{s}'}{S} \cdot \left\{ (\vec{H}' \cdot \nabla' G) \dot{\varepsilon} - (\vec{H}' \cdot \dot{\varepsilon}) \nabla' G + i \omega \varepsilon_0 \varepsilon, G(\dot{\varepsilon} \times \vec{E}') - \vec{H}'(\dot{\varepsilon} \cdot \nabla' G) \right\} \]

We will now use this integral relation to derive expressions for the tangential magnetic field on both sides of the air-dielectric interface. Let's indicate the air region \((z>d)\) by the subscript 1 and the dielectric region \((0<z<d)\) by the subscript 2, as shown in Fig. 2. The volume \(V_1\) occupies the entire half-space above the patch, its boundary \(S_1\) receding to infinity. The volume \(V_2\) encloses the entire dielectric slab, the lateral sides of its boundary \(S_2\) also receding to infinity.

In the region 1 \((z>d)\), we define a Green function \(G_1\) as follows
\[|\nabla^2 + k_0^2| G_1 = - \delta(\vec{r} - \vec{r}') \]

along with a Neumann boundary condition on the interface plane:
\[\frac{\partial G_1}{\partial z} \bigg|_{z=d} = 0 \quad ; \quad \forall \vec{\rho} \]

Appendix A gives the well-known result:
\[G_1 = \frac{1}{4\pi} e^{-i k_0 \sqrt{((z-z')^2 + (y-y')^2 + (z-z')^2 + (z-z'-2d)^2)^2}} \]

Replacing \(G\) by \(G_1\) and \(S\) by \(S_1\) in (4), we can discard the portion of \(S_1\) at infinity, since
Fig. 2. Volumes V_1 and V_2 for application of Green's theorem.

$$G_1 = O(e^{im|k_a||\hat{r} - \hat{r}'|}/|\hat{r} - \hat{r}'|) \quad \text{as} \quad |\hat{r} - \hat{r}'| \rightarrow \infty \quad \text{in} \quad V_1 \quad (8)$$

and we can apply the limiting absorption principle. Thus,

$$\hat{e} \cdot \bar{H}^t(\hat{r}_1) =$$

$$\int_{S_1 + S_A} d\bar{s}' \cdot \left\{ (\bar{H}^t \cdot \nabla' G_1)\hat{e} - (\bar{H}^t \cdot \hat{e}) \nabla' G_1 + i\omega \varepsilon_0 G_1 (\hat{e} \times \bar{E}^t) - \bar{H}^t (\hat{e} \cdot \nabla' G_1) \right\}$$

with $d\bar{s}' = -\hat{a}_z d\bar{s}'$ and $z' = d^+$. Now, we choose the arbitrary constant vector \hat{e} as any vector in the $z=d$ plane. Then, enforcing the boundary condition (6):

$$\bar{H}^t(\hat{r}_1) = \int_{S_1 + S_A} d\bar{s}' \left\{ H^t_z \nabla' G_1 - i\omega \varepsilon_0 G_1 (\bar{E}^t \times \hat{a}_z) \right\}$$

where \bar{H}^t is the projection of \bar{H}^t in the plane $z = d^+$. Since the surface of the patch is perfectly electrically conducting
\[
\vec{E}_s \times \hat{a}_s \bigg|_{S_1} = 0 \\
H^I_t \bigg|_{S_1} = 0
\]

We can finally write

\[
\vec{H}_s^*(\hat{r}_1) = \int_{S_A} ds' \left\{ H^I_t \nabla' G_1 - i \omega \varepsilon_0 G_1 (\vec{E}^* \times \hat{a}_s') \right\} \quad ; \quad z' = d^+
\]

(9)

where \(\hat{r}_1 \in V_1 \). In the region 2 \((0 < z < d)\), we define a Green function \(G_2 \) as follows

\[
[\nabla^2 + k^2] G_2 = -\delta(\hat{r} - \hat{r}')
\]

(10)

with a Neumann boundary condition on the interface plane \(z = d \) and the ground plane \(z = 0 \)

\[
\frac{\partial G_2}{\partial z} \bigg|_{z=0,d} = 0 \quad ; \quad \forall \hat{\rho}
\]

(11)

Appendix A gives the well-known result:

\[
G_2 = G_2^C + G_2^{TEM}
\]

(12a)

with

\[
G_2^C = -\frac{i}{2d} \sum_{m=1}^{\infty} \cos \frac{m \pi z}{d} \cos \frac{m \pi z'}{d} \nabla_0^{(0)} \left((k^2 - \frac{m^2 \pi^2}{d^2}) |\hat{\rho} - \hat{\rho}'| \right)
\]

(12b)

\[
G_2^{TEM} = -\frac{i}{4d} \nabla_0^{(0)} (k |\hat{\rho} - \hat{\rho}'|)
\]

(12c)

where \(\nabla_0^{(0)} \) is the Hankel function of the second kind of order 0 and the branch of the square root is given as

\[
(k^2 - \frac{m^2 \pi^2}{d^2})^{\frac{1}{2}} = -i \left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{1}{2}}
\]

(13)

Also, as source and observation points move apart, \(G_2 \) behaves as

\[
G_2 = O \left(e^{ilm|\hat{\rho} - \hat{\rho}'|/|\hat{\rho} - \hat{\rho}'|^{\frac{1}{2}}} \right) \quad as \quad |\hat{\rho} - \hat{\rho}'| \rightarrow \infty \quad in \quad V_2
\]

so that we can discard the contribution of \(S_2 \) at infinity. Following closely the derivation of (9), we get a similar expression for the horizontal magnetic field in region 2:

\[
\vec{H}_s^*(\hat{r}_2) = -\int_{S_A} ds' \left\{ H^I_t \nabla' G_2 - i \omega \varepsilon_0 \varepsilon_s G_2 (\vec{E}^* \times \hat{a}_s') \right\} \quad ; \quad z' = d^-
\]

(14)

Consider an incident TEM field under the patch. This field corresponds to the dominant mode of the corresponding parallel-plate waveguide. We assume its presence everywhere in the dielectric slab:
\[\vec{E}^i = \hat{a}_z E_z^i(\hat{\rho}) \]
\[\vec{H}^i = \hat{a}_x H_x^i(\hat{\rho}) + \hat{a}_y H_y^i(\hat{\rho}) \] \quad \forall \hat{\rho} \ ; \ 0 < z < d \quad (15)

We note that the incident field satisfies the boundary conditions on the top patch and on the ground plane. At the edge of the patch, the normal surface electric current or, equivalently, the discontinuity of the total tangential magnetic field must vanish:

\[\hat{a}_l \cdot \left\{ \vec{H}^i(n = 0,l,z = d^+) - \vec{H}^i(n = 0,l,z = d^-) - \vec{H}^i(n = 0,l,z = d^-) \right\} = 0 \quad (16) \]

Replacing \(\vec{H}^i \) by the integral expressions developed above, (9) and (14), we obtain an important aperture integral relation:

\[\vec{H}^i(n = 0,l,z = d^-) = \]
\[\hat{a}_l \cdot \int_{S_A} ds^\prime \left\{ H_x(n^\prime,l^\prime) \left[\nabla' G_1 + \frac{\nabla' G_2}{\mu_r} \right] - i \omega \varepsilon_0 [\vec{E}(n^\prime,l^\prime) \times \hat{a}_z^\prime] \right\} \left[G_1 + \varepsilon_r G_2 \right] \]

where

\[G_1 = G_1(n = 0,l,z = d^+; n^\prime,l^\prime,z^\prime = d^-) \]
\[G_2 = G_2(n = 0,l,z = d^-; n^\prime,l^\prime,z^\prime = d^-) \]
\[H_x(n^\prime,l^\prime) = H_x(n^\prime,l^\prime,z^\prime = d^+) \]

3. TANGENTIAL MAGNETIC FIELD AT THE EDGE OF THE PATCH

Our next step will give an integral expression for the tangential TEM part of the scattered magnetic field under the patch. This TEM component corresponds to the dominant modes we want to excite under the patch. Equation (14) yields at once

\[H_{i,TEM}^i(n = 0,l,z = d^-) = \]
\[\hat{a}_l \cdot \int_{S_A} ds^\prime \left\{ - H_x(n^\prime,l^\prime) \frac{\nabla' G_{2,TEM}}{\mu_r} + i \omega \varepsilon_0 \varepsilon_r G_2^{TEM} \left[\vec{E}(n^\prime,l^\prime) \times \hat{a}_z^\prime \right] \right\} \quad (18) \]

where the kernel \(G_{2,TEM} \) is given by (12c). As it stands now, (18) is an exact relation. But, since we do not know the field components \(H_x \) and \(\vec{E} \times \hat{a}_x \) in the aperture \(S_A \), this equation is not directly useful. The strategy here consists of finding a suitable static approximation for the field in the aperture region. However, if we were to introduce these approximations in equation (18) directly, the resulting approximation for \(H_{i,TEM}^i \) would likely be inaccurate. Following a scheme successfully applied earlier in a similar problem [14], we combine (18) with the integral form of the edge condition (17). Then, the approximation of the aperture field by quantities proportional to the corresponding static distribution will
give us accurate results.

Recalling the edge condition (17) and denoting the total tangential TEM magnetic field by $H_I^{TEM} = H_I^{TEM,X} + H_I$, (18) becomes

$$H_I^{TEM} (n=0,l,z = d^-) =$$

$$\hat{a}_l \cdot \int_{S_A} ds' \left\{ H_s(n',l') [\nabla' G_1 + \frac{\nabla' G_2 \epsilon}{\mu_s}] - i \omega \epsilon_0 [E(n',l') \times \hat{a}_s'] [G_1 + \epsilon_s G_2 \epsilon] \right\}$$ \hspace{1cm} (19)

In order to justify the approximations we will use for the aperture fields, we need to stress a few points. First H_I^{TEM} is a small quantity around the patch. Indeed, "ideal" cavity models set this component of the magnetic field to zero along the edge. Second, we must see that the dominant contribution in the right-hand side of (19) comes from a narrow region close to the edge because of the fast decay of the aperture field away from the edge. Third, the surface wave and radiation wave contribution are accounted for by the corresponding kernels, even if the aperture fields are not accurately approximated away from the edge. To approximate the true electric aperture field in the integral expression (19), we assume that the field emerges perpendicularly from the locally "straight" edge of the patch. Thus the dynamic field contribution can be adequately modelled by the product of a voltage $V(l)$ dependent on position along the edge and the static field distribution $E_{0e}(n)$:

$$\vec{E} \times \hat{a}_s \simeq -\hat{a}_l E_{0e}(n) \frac{V(l)}{[1 + n \chi(l)]}$$ \hspace{1cm} (20)

where $\chi(l)$ is the curvature of the perimeter P at the point $(n=0,l)$. The denominator of (20) takes care of the spreading of the field lines. The surface integral transformation is thus given by

$$ds = dn \ dl \ [1 + n \chi(l)]$$ \hspace{1cm} (21)

To uniquely specify the static edge voltage, we enforce the following normalization:

$$\int_0^\infty dn' E_{0e}(n') = 1$$ \hspace{1cm} (22)

We can make a similar argument for the z-directed component of the aperture magnetic field, product of an amplitude factor $W(l)$ dependent on position along the edge and the static field distribution $H_{0z}(n)$ at $z = d^+$:

$$H_z \simeq H_{0z}(n) \frac{W(l)}{[1 + n \chi(l)]}$$ \hspace{1cm} (23)

with a corresponding normalization:

$$\int_0^\infty dn' H_{0z}(n') = 1 \quad ; \quad z = d^+$$ \hspace{1cm} (24)

Although the static fields E_{0e} and H_{0z} stem from uncoupled static problems, the dynamical behavior of the field imposes a relationship between the amplitude factors $V(l)$ and $W(l)$. Faraday's equation applied at the locally "straight" edge yields
\[-i \omega \mu_0 H_\ell = \frac{\partial E_\ell}{\partial n} - \frac{\partial E_\alpha}{\partial l}; \quad z = d^+ \]

(25)

Introducing the field approximations (20) and (23) into (25)

\[-i \omega \mu_0 W(l) H_{0z}(n) = [1 + n \chi(l)] \frac{\partial E_\ell}{\partial n} - E_0\alpha(n) \frac{\partial V(l)}{\partial l}; \quad z = d^+ \]

Integrating both sides of the above relation with respect to \(n\) from the edge to infinity, we get

\[-i \omega \mu_0 W(l) \int_0^\infty dn \ H_{0z}(n) = - \frac{\partial V(l)}{\partial l} \int_0^\infty dn \ E_0\alpha(n); \quad z = d^+ \]

(26)

where we have used both radiation condition \(E_\ell(n \to \infty) = 0\) and the perfectly conducting edge condition \(E_\ell(n = 0) = 0\). Recall the static field normalizations (22) and (24) to obtain

\[W(l) = - \frac{i}{\omega \mu_0} \frac{\partial V(l)}{\partial l} \]

(27)

We can now put the pieces together and write down the approximate expression for the TEM part of the tangential magnetic field at the edge:

\[H_{\ell}^{TEM}(n = 0, l, z = d^-) = \delta \int_0^\infty d\rho' \ \tilde{f}(\rho') dl' \]

\[\cdot \left(- \frac{i}{\omega \mu_0} \frac{\partial V}{\partial l'} H_{0z}(n') [\nabla' G_1 + \frac{\nabla' G_2^c}{\mu_r}] + i \omega \epsilon_0 \delta \int_0^\infty d\rho' V(l') E_0\alpha(n') [G_1 + \epsilon_c G_2^c] \right) \]

(28)

with

\[G_1 = \frac{1}{2\pi} \left\{ \frac{e^{-ik_\ell |\rho - \rho'|}}{|\rho - \rho'|} \right\} \]

\[G_2^c = - \frac{i}{d} \sum_{m=1}^\infty \ \mathbf{H}_0^{(2)} \left((k^2 - \frac{m^2\pi^2}{d^2}) \ |\rho - \rho'| \right) \]

4. GENERALIZED EDGE BOUNDARY CONDITION

Although the static field is known exactly from a Wiener-Hopf solution of the edge problem [15],[16], the integral relation (28) still does not prove very useful. The two-dimensional integration domain is infinite along one direction and the calculation of the static field requires computing a Laplace-transform integral [15]. This makes the evaluation of equation (28) very inefficient. One of the key features of the technique presented here is that the infinite integral can be approximated very accurately in closed form, making the result a function of a perimeter integral only.
For convenience, define a function $A(l)$ on the perimeter of the patch. We require $A(l)$ to be a smooth function of the edge coordinate l. By smooth, we mean

$$A(l + \delta) \simeq A(l)$$

where δ is a small distance of the order of a few d. We first form an inner product between expression (28) and $A(l)$ over the perimeter P:

$$\oint_{P} d\gamma A(l) H_{1}^{TM}(n = 0, l, z = d^-) = \oint_{P} d\gamma \Lambda(l) \hat{a}_{l} \int_{0}^{\infty} d\gamma \cdot \oint_{P} d\gamma A(l) \hat{a}_{l}$$

$$\cdot \left(- \frac{i}{\omega \mu_0} \frac{\delta V}{\delta l} H_{0z}(n^-)[\nabla \cdot G_{1} + \frac{\nabla \cdot G_{2}}{\mu_r}] + i \omega \epsilon_0 \hat{a}_{l} V(l') E_{0n}(n^-)[G_{1} + \epsilon, G_{2}] \right)$$

Assuming we can change the order of the primed and unprimed integrals, the right-hand side of the above equation can be treated as the sum of four terms:

$$\oint_{P} d\gamma A(l) H_{1}^{TM}(n = 0, l, z = d^-) = R_{11} + R_{12} + R_{21} + R_{22} \quad (29)$$

where

$$R_{11} = i \omega \epsilon_0 \int_{0}^{\infty} d\gamma \cdot \oint_{P} d\gamma V(l') E_{0n}(n^-) \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} G_{1} \quad (30)$$

$$R_{12} = i \omega \epsilon_0 \int_{0}^{\infty} d\gamma \cdot \oint_{P} d\gamma V(l') E_{0n}(n^-) \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} G_{2} \quad (31)$$

$$R_{21} = - \frac{i}{\omega \mu_0} \int_{0}^{\infty} d\gamma \cdot \oint_{P} d\gamma V(l') \frac{\partial V}{\partial l} H_{0z}(n^-) \oint_{P} d\gamma A(l) \hat{a}_{l} \cdot \nabla \cdot G_{1} \quad (32)$$

$$R_{22} = - \frac{i}{\omega \mu_0 \mu_r} \int_{0}^{\infty} d\gamma \cdot \oint_{P} d\gamma V(l') \frac{\partial V}{\partial l} H_{0z}(n^-) \oint_{P} d\gamma A(l) \hat{a}_{l} \cdot \nabla \cdot G_{2} \quad (33)$$

These four terms are evaluated in Appendix B:

$$R_{11} = \frac{i \omega \epsilon_0}{2\pi} \int_{0}^{\infty} d\gamma V(l') \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} e^{-i\omega \epsilon_0 \frac{1}{2}(\rho^2 + \rho^2 + d^2)}$$

$$- \frac{i \omega \epsilon_0}{\pi} \int_{0}^{\infty} d\gamma V(l') \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} \ln \left(\frac{n}{d} \right) e^{-i\omega \epsilon_0 \frac{1}{2}(\rho^2 + \rho^2 + d^2)} \quad (34)$$

$$R_{12} = - \frac{i \omega \epsilon_0 \epsilon_r}{\pi} \int_{0}^{\infty} d\gamma V(l') \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} \ln \left(1 - e^{-\frac{\pi \epsilon_0}{d}} \right) e^{-i\omega \epsilon_0 \frac{1}{2}(\rho^2 + \rho^2 + d^2)} \quad (35)$$

$$R_{21} = \frac{i}{2\pi \omega \epsilon_0 \mu_r} \int_{0}^{\infty} d\gamma V(l') \hat{a}_{l} \cdot \oint_{P} d\gamma A(l) \hat{a}_{l} \left[e^{-\frac{\omega \epsilon_0 \mu_r}{2}(\rho^2 + \rho^2 + d^2)} \right]$$
\[-\frac{i}{\pi \omega \mu_0} \int_0^\infty dn' H_{0x}(n') \ln\left(\frac{n'}{d}\right) \oint_P d'l' \Lambda(l') \frac{\partial^2 V}{\partial l'^2} \]

(36)

\[R_{22} = -\frac{i}{\pi \omega \mu_0 \mu_r} \int_0^\infty dn' H_{0x}(n') \ln\left(1 - e^{-\pi n'/d}\right) \oint_P d'l' \Lambda(l') \frac{\partial^2 V}{\partial l'^2} \]

(37)

where \(\rho_0(n', l') \) is the projection of \(\rho(n', l') \) on \(P \) as shown in Fig. B1. At this point, we recall two dual results on static field integrals derived in a previous report \([14]\). We must emphasize that these integrals, based on a Wiener-Hopf solution of the static straight edge problem, are exact.

\[\int_0^\infty dn' E_{0x}(n') \left[\ln\left(\frac{n'}{d}\right) + \epsilon_r \ln\left(1 - e^{-\pi n'/d}\right) \right] = \ln 2 + 2 \epsilon_r Q_0(-\delta_r) - \epsilon_r \ln(2\pi) - 1 \]

(38)

where

\[Q_0(x) = \sum_{m=1}^\infty x^m \ln m \]

(39)

and \(\delta_r \) is a dielectric contrast coefficient given by

\[\delta_r = \frac{\epsilon_r - 1}{\epsilon_r + 1} \]

(40)

Likewise,

\[\int_0^\infty dn' H_{0x}(n') \left[\ln\left(\frac{n'}{d}\right) + \frac{1}{\mu_r} \ln\left(1 - e^{-\pi n'/d}\right) \right] = \ln 2 + \frac{2}{\mu_r} Q_0(\delta_\mu) - \frac{1}{\mu_r} \ln(2\pi) - 1 \]

(41)

where

\[\delta_\mu = \frac{\mu_r - 1}{\mu_r + 1} \]

(42)

If we substitute expressions (38) and (41) together with normalizations (22) and (24) into the four terms (34)-(37) and rearrange, then the boundary condition (29) becomes

\[\oint_P dl \Lambda(l) H_{TM}^x (n = 0, l, z = d') = \]

\[\frac{i \omega \epsilon_0}{2\pi} \oint_P dl' V(l') \delta_i \cdot \oint_P dl \Lambda(l) \delta_i G_d(l, l') + \frac{i}{2\pi \omega \mu_0} \oint_P d'l' \frac{\partial V}{\partial l'} \oint_P dl \Lambda(l) \frac{\partial}{\partial l'} G_d(l, l') \]

\[- \frac{i \omega \epsilon_0}{\pi} F(\epsilon_r) \oint_P d'l' \Lambda(l') V(l') - \frac{i}{\pi \omega \mu_0} F(\frac{1}{\mu_r}) \oint_P d'l' \Lambda(l') \frac{\partial^2 V}{\partial l'^2} \]

(43)

where we have defined for convenience

\[F(x) = \ln 2 + 2x - \epsilon_0 \left(\frac{1 - x}{1 + x}\right) - x \ln(2\pi) - 1 \]

(44)

and
\[G_d(l,l') = \frac{e^{-ik_d(1-\rho^2+1^2)^n}}{(|\rho - \rho_0|^2 + d^2)^n} \quad | \quad \rho, \rho_0 \in P \]

Equation (43) can be considered as the generic form of a generalized edge boundary condition (GEBC). The relative freedom we have in choosing \(\Lambda(l) \) allows for several distinct applications. In the following sections, we will describe two such developments. First, segmenting the patch and letting \(\Lambda(l) \) become a pulse function, we get a generalized boundary condition readily applicable to various microstrip structures, such as antennas and discontinuities. Second, letting \(\Lambda(l) = V(l) \), the actual edge voltage, we can build a perturbation expression for the resonant frequencies and Q-factor of microstrip patch resonators.

Letting \(\Lambda(l) \) become a sequence of functions approaching a Dirac impulse, we can write a "local form" of the GEBC:

\[H_i^{TEM} (n=0,l,z=d^-) = \frac{i \omega \epsilon_0}{\pi} \left\{ - F(\epsilon_r) V(l) + \frac{1}{2} \oint_P \phi \, dl' \, V(l')[\hat{a}_i \cdot \hat{a}_i] G_d(l,l') \right\} \\
+ \frac{i}{\pi \omega \mu_0} \left\{ - \frac{\partial^2 V(l)}{\partial l^2} \left(F\left(\frac{1}{\mu_r} \right) + \frac{1}{2} \oint_P \phi \, dl' \, \frac{\partial V}{\partial l'} \, G_d(l,l') \right) \right\} \]

We have however to keep in mind that this expression is only valid, strictly speaking, when we take an inner product on both sides with a relatively smooth function \(\Lambda(l) \). Nevertheless, this local form of the GEBC provides a convenient tool, with much physical insight.

5. SEGMENTATION OF THE PATCH

We represent an arbitrarily shaped patch by a succession of straight segments, as shown in Fig. 3. In order to provide as much generality as possible, the segments \(S_i \) can be of unequal lengths \(\Delta_i \). Furthermore, we assume that the number of segments is such that the shape of the patch is reasonably well approximated and that the edge voltage does not vary widely along one segment. We denote by \(\hat{a}_i \) the unit vector tangent to the segment \(S_i \). Also we indicate by \(\rho_i \) \((n=0,l=l_i) \) the position vector of the segment's middle-point. Consistent with this segmentation, we let \(\Lambda(l) = \Pi_i(l) \), where \(\Pi_i(l) \) is a piecewise constant pulse function defined as follows

\[\Pi_i(l) = \begin{cases} 1 & \quad l \in S_i \\ 0 & \quad \text{otherwise} \end{cases} \]

Therefore, we can write a segmented version of the generalized boundary condition directly from expression (43):

\[H_i^{TEM} (l_i) = \frac{i \omega \epsilon_0}{2\pi \Delta_i} \oint_P \phi \, dl' \, V(l') \, \hat{a}_i \cdot \int_{S_i} dl \, \hat{a}_i \, G_d(l,l') \]
Fig. 3. Segmentation of the patch.

\[+ \frac{i}{2 \pi \omega \mu_0 \Delta_i} \oint_p d\mathbf{l}' \frac{\partial V}{\partial I'} G_d(l, l') \bigg| \mathbf{r} - \mathbf{r}_i + \Delta_i / 2 \]

\[\mathbf{\dot{r}} = \mathbf{\dot{r}}_i - \Delta_i / 2 \]

\[- \frac{i \omega \epsilon_0}{\pi} V(l_i) F(\epsilon_r) - \frac{i}{\pi \omega \mu_0} \frac{\partial^2 V}{\partial I^2} \bigg|_{l=l_i} F(\frac{1}{\mu_r}) \] (47)

This GEBC allows the efficient and accurate analysis of various patch structures of arbitrary shapes. Some applications will be presented in a forthcoming report.

6. PERTURBATION APPROACH

It is well known that the cavity model [9]-[11] provides an efficient way of analyzing microstrip patch antennas and resonators. Closed form results can be obtained for simple patch shapes such as rectangles, circles and ellipses. Opinions differ, however, on what kind of boundary condition should be imposed at the edge of the patch. This inability to find an accurate boundary condition has originated mainly from the complexity of the field behavior close to the edge. Our generalized boundary condition is well suited for developing
a perturbation approach. The unperturbed problem will be that of a closed cavity under the patch, with perfectly electrically conducting top and bottom walls and perfectly magnetically conducting side walls. This representation is often called an "ideal" cavity model. The perturbed situation will correspond to the actual patch, with dynamical edge effects, radiation and coupling between edges. We will consider here unloaded patch resonators only.

Following the normalization (22), we can define a voltage from the z-directed component of the TEM electric field:

$$ V = -E_z^{TEM} d $$

(48)

The true voltage satisfies the source-free wave equation:

$$(\nabla^2 + k^2) V = 0$$

(49)

where $\nabla = \hat{a}_z \partial / \partial z + \hat{a}_y \partial / \partial y$. Faraday's equation applied at the edge of the patch, for $0 < z < d$, yields directly

$$ \frac{\partial V}{\partial n} \bigg|_{on \: P} = -i \omega \mu_0 \mu_r d H_z^{TEM} \bigg|_{on \: P} $$

(50)

The "ideal" cavity model voltage for the same patch satisfies the equation:

$$(\nabla^2 + k^2) \tilde{V} = 0$$

(51)

with the boundary condition

$$ \frac{\partial \tilde{V}}{\partial n} \bigg|_{on \: P} = 0 $$

where we have indicated with a tilde all variables pertaining to the "ideal" cavity model. Recall Green's theorem [17]:

$$ \int_{S_c} ds \left(V \nabla_i^2 \tilde{V} - \tilde{V} \nabla_i^2 V \right) = \oint_P dt \left(V \frac{\partial \tilde{V}}{\partial n} - \tilde{V} \frac{\partial V}{\partial n} \right) $$

(52)

Substituting the wave equations (49) and (51) into (52), and using a standard procedure, we find the correction for eigenvalues:

$$ k^2 - k^2 = \frac{i \omega \mu_0 \mu_r d \oint_P dt \tilde{V}(l) H_z^{TEM}(l)}{\int_{S_c} ds \: V \tilde{V}} $$

(53)

The numerator can be readily evaluated if we recall our generalized boundary condition (43) with $\Lambda(l) = \tilde{V}(l)$. In what is the key feature of a perturbation procedure [18], we then approximate the edge voltage $V(l)$ by its cavity-model counterpart $\tilde{V}(l)$. Then,
\[k^2 - \bar{k}^2 \approx \frac{i \omega \mu_0 \mu}{\int_{S_C} ds \tilde{V}^2} \quad (54) \]

with

\[N_1 = \frac{i \omega \epsilon_0}{2 \pi} \oint_{P} \oint_{P} dl \cdot \left[\alpha_i \cdot \alpha_i \right] \tilde{V}(l) \tilde{V}^* (l') G_0(l,l') - \frac{i \omega \epsilon_0}{\pi} F(\epsilon) \oint_{P} dl \tilde{V}^2 \quad (55) \]

\[N_2 = \frac{-i}{2 \pi \omega \mu_0} \oint_{P} \oint_{P} dl \cdot \frac{\partial \tilde{V}}{\partial l} \cdot \frac{\partial \tilde{V}}{\partial l'} G_0(l,l') + \frac{i}{\pi \omega \mu_0} F \left(\frac{1}{\mu} \right) \oint_{P} dl \left(\frac{\partial \tilde{V}}{\partial l} \right)^2 \quad (56) \]

where we have integrated by parts to obtain the term \(N_2 \).

Once the perturbed eigenvalues \(k \) are computed, we can easily find the corresponding unloaded quality factor \(Q \) \[19\]:

\[Q = \frac{\text{Re}(k)}{2 \text{Im}(k)} \quad (57) \]

7. THEORY OF THE RECTANGULAR PATCH ANTENNA

The rectangular microstrip antenna has received more attention than all other shapes taken together. The simplicity of the geometry has led to many specialized techniques. Furthermore, even the most general numerical techniques usually work better on rectangular shapes. Finally, because of the large amount of experimental data available in the literature, the rectangular patch has become a benchmark for comparisons.

First attempts to analyze the rectangular patch antenna were made by Munson \[6\] and Derneryd \[7\], \[20\] in the mid-seventies. They used an analogy with a section of transmission line terminated by lumped impedances. This method became known as the transmission-line model and was later refined by Dubost \[21\], Lier \[22\] and Pues and Van de Capelle \[8\]. Approximate formulas for the resonant frequency based on the same approach have been given by Sengupta \[23\].

At the same time, microstrip antennas were also looked at as resonators. Wolff and Knoppik \[24\] introduced equivalent dimensions and dielectric constants to simulate the effects of the fringing field. Lo et al. \[9\], \[25\], Richards et al. \[10\] and Derneryd and Lind \[26\] improved and completed what has been called the cavity model. Simultaneously, Carver \[27\] and Carver and Mink \[11\] have presented a technique based on modal expansion and lumped equivalent wall admittances.

Using a very different point of view, Chang \[28\] and Kuester et al. \[29\] have considered the rectangular patch using a transverse resonance model, where TEM waves bounce off the edges of the patch. Analytical results for the resonant frequency and the Q-factor, valid for electrically thin substrates, are given in \[29\].
Lastly, many different numerical approaches have been proposed. In 1973 already, Silvester introduced a finite element analysis [30]. Two years later, Akhtarzad and Johns [31] presented a transmission-line matrix (TLM) approach. However, these two techniques have difficulty including radiation and surface wave effects. Later, Itoh and Menzel [1] have presented a dynamic full-wave analysis based on an integral transform of the wave equation. In what appears the most accurate analysis available, several authors have presented models based on direct solution of the integral equation for the patch current. Bailey and Deshpande [2], Newman and Tulyathan [32], Mosig and Gardiol [4], [5] and Pozar [3] have all given results for the rectangular patch. Recently, Shimin [33] has given approximate formulas based on [2]. In all cases, numerical methods appear handicapped by lengthy computing times.

In this section, we will compute the resonant frequency and the quality factor of a rectangular microstrip patch, based on the expressions (54) and (57). The results can be expressed in a simple form for the modes TM_{10} and TM_{01}.

Consider the geometry of the rectangular patch shown in Fig. 4. The solution of the "ideal" cavity model, with magnetic walls at $x = 0$, l_x and $y = 0$, l_y, is easily obtained by separation of variables in the two dimensional wave equation (51). For the sake of clarity, we will limit ourselves to the dominant mode TM_{10}. Along the edges of the patch:
\[\tilde{V}(x = 0) = A_{10} \quad 0 \leq y \leq l_y\]
(58a)

\[\tilde{V}(x = l_x) = -A_{10} \quad 0 \leq y \leq l_y\]
(58b)

\[\tilde{V}(y = 0) = A_{10}\cos\left(\frac{\pi x}{l_x}\right) \quad 0 \leq z \leq l_z\]
(58c)

\[\tilde{V}(y = l_y) = A_{10}\cos\left(\frac{\pi x}{l_x}\right) \quad 0 \leq z \leq l_z\]
(58d)

where \(A_{10}\) is the mode amplitude constant for the mode \(TM_{10}\). Recall the correction for the eigenvalues given by equation (54):

\[k^2 - \kappa^2 \sim \frac{i\omega\mu_0\mu_r d (N_1 + N_2)}{\int_{S_c} ds \tilde{V}^2}\]

with

\[N_1 = \frac{i\omega\varepsilon_0}{2\pi} \oint_P \oint_P [\tilde{a}_{i'} \cdot \tilde{a}_i] \tilde{V}(l) \tilde{V}(l') G_4(l,l') - \frac{i\omega\varepsilon_0}{\pi} F(\varepsilon_r) \oint_P \tilde{V}^2\]

\[N_2 = \frac{-i}{2\pi\omega\mu_0} \oint_P \oint_P \frac{\partial\tilde{V}}{\partial l'} \frac{\partial\tilde{V}}{\partial l} G_4(l,l') + \frac{i}{\pi\omega\mu_0} F\left(\frac{1}{\mu_r}\right) \oint_P \left(\frac{\partial\tilde{V}}{\partial l}\right)^2\]

It is convenient to number the sides of the rectangular patch as indicated in Fig. 4, to obtain

\[N_1 = \frac{i\omega\varepsilon_0}{2\pi} \sum_{i=1}^{4} \sum_{j=1}^{4} I_{ij} - \frac{i\omega\varepsilon_0}{\pi} F(\varepsilon_r) \oint_P \tilde{V}^2\]
(59)

where the coupling integrals \(I_{ij}\) are given by

\[I_{ij} = \int_{side \ i} dl \int_{side \ j} dl' \tilde{V}(l) \tilde{V}(l') [\tilde{a}_{ii'} \cdot \tilde{a}_{ij}] G_4(l,l')\]
(60)

Because of the symmetry of the geometry and the scalar product \([\tilde{a}_{ii'} \cdot \tilde{a}_{ij}]\), we are left with four terms only. Note also that, without loss of generality, we can set the arbitrary mode amplitude constant \(A_{10}\) to unity. Therefore,

\[N_1 = \frac{i\omega\varepsilon_0}{\pi} \left[I_{11} + I_{13} + I_{22} + I_{24} - F(\varepsilon_r)(l_x + 2l_y)\right]\]
(61)

where

\[I_{11} = \int_0^l dx \int_0^l dx' \cos \tilde{k} x \cos \tilde{k} x' \frac{e^{-ik_x((z-z')^2 + d^2)^{\frac{1}{2}}}}{((z-z')^2 + d^2)^{\frac{1}{2}}})\]
(62a)
\[I_{13} = - \int_0^l dz \int_0^l dz' \cos k_x z \cos k_x z' \frac{e^{-ik_x (x-x')^2 + l_x^2 + d^2)^{\frac{k}{2}}}}{((x-x')^2 + l_x^2 + d^2)^{\frac{k}{2}}} \] (62b)

\[I_{22} = \int_0^l dy \int_0^l dy' \frac{e^{-ik_y (y-y')^2 + d^2)^{\frac{k}{2}}}}{((y-y')^2 + d^2)^{\frac{k}{2}}} \] (62c)

\[I_{24} = \int_0^l dy \int_0^l dy' \frac{e^{-ik_y (y-y')^2 + l_y^2 + d^2)^{\frac{k}{2}}}}{((y-y')^2 + l_y^2 + d^2)^{\frac{k}{2}}} \] (62d)

where \(\bar{k} = \pi/l_x \) is the dominant mode, unperturbed, wavenumber. The integral \(I_{11} \) can be approximated in closed form as shown in Appendix E:

\[I_{11} = l_x C_i(\pi) - \frac{\text{Si}(\pi)}{k} - \frac{\pi}{k} (\gamma + \ln (d/2)) - \frac{\pi \ln (\bar{k}^2 - k_0^2)}{2\bar{k}} \]

\[+ i \left[\frac{1}{\bar{k} + k_0} e^{-ik_y l_y} + \frac{1}{2\bar{k}} \ln \left(\frac{\bar{k} + k_0}{\bar{k} - k_0} \right) \right] - \frac{(i + \pi)}{2\bar{k}} E_1(i k_0 l_x - i\pi) \]

\[+ \frac{(i - \pi)}{2\bar{k}} E_1(i k_0 l_x + i\pi) + \frac{\text{Si}(\pi) - \pi/2 - \pi C_i(\pi)}{\bar{k}} \] (63)

where the cosine integral \(C_i \), sine integral \(Si \) and exponential integral \(E_1 \) functions are defined in Appendixes E and F. This approximation, valid for small \(k_0 d \), may fail to give accurate results for electrically thick substrates. A better approximation could presumably be derived using the Mellin Transform approach [29]. Another, more practical, approach is to seek a numerically efficient expression such as the one proposed in Appendix G:

\[I_{11} = \int_0^l dp \frac{e^{-ik_y (p^2 + d^2)^{\frac{k}{2}}}}{(p^2 + d^2)^{\frac{k}{2}}} \left[(l_x - p) \cos \frac{kp}{\bar{k}} - \frac{\sin \frac{k p}{\bar{k}}}{\bar{k}} \right] - l_x \sinh^{-1}(l_x / d) \] (64)

Comparisons between the expressions (63) and (64) show that the relative error in (63) is probably of order \(\bar{k} d \) (Fig. 5). The approximation (63) has however proved to be satisfactory for all cases tested. The terms \(I_{13}, I_{22} \) and \(I_{24} \) can all be expressed in a numerically efficient form (Appendix G):

\[I_{13} = - \int_0^l dp \frac{e^{-ik_y (p^2 + l_y^2 + d^2)^{\frac{k}{2}}}}{(p^2 + l_y^2 + d^2)^{\frac{k}{2}}} \left[(l_x - p) \cos \frac{kp}{\bar{k}} - \frac{\sin \frac{k p}{\bar{k}}}{\bar{k}} \right] \] (65)

\[I_{22} = 2 \int_0^l dp \frac{(l_y - p) e^{-ik_y (p^2 + d^2)^{\frac{k}{2}}}}{(p^2 + d^2)^{\frac{k}{2}}} - l_y + 2 l_y \sinh^{-1}(l_y / d) \] (66)

\[I_{24} = 2 \int_0^l dp \frac{(l_y - p) e^{-ik_y (p^2 + l_y^2 + d^2)^{\frac{k}{2}}}}{(p^2 + l_y^2 + d^2)^{\frac{k}{2}}} \] (67)
Fig. 5. Relative error on terms I_{11} and J_{11}.
The term N_2 can be written

$$N_2 = \frac{-i}{2\pi \omega \mu_0} \sum_{i=1}^{4} \sum_{j=1}^{4} J_{ij} + \frac{i}{\pi \omega \mu_0} F(\frac{1}{\mu_r}) \phi \int P \left(\frac{\partial \vec{V}}{\partial l} \right)^2$$

(68)

where the coupling integrals are given by

$$J_{ij} = \int_{\text{side } i} dl \int_{\text{side } j} dl' \frac{\partial \vec{V}}{\partial l} \frac{\partial \vec{V}}{\partial l'} G_d(l, l')$$

(69)

Because the derivative of the edge voltage, $\partial \vec{V}/\partial l$, vanishes along the sides 2 and 4, and because of the symmetry of the geometry, (68) reduces to

$$N_2 = \frac{-i}{\pi \omega \mu_0} \left[J_{11} + J_{13} - F(\frac{1}{\mu_r}) \frac{\pi^2}{l_s} \right]$$

(70)

where

$$J_{11} = \tilde{k}^2 \int_0^l dz \int_0^l dz' \sin \tilde{ka} \sin \tilde{ka}' \frac{e^{-ik_a(z - z')^2 + l^2 + d^2}}{(z - z')^2 + d^2)^{1/4}}$$

(71a)

$$J_{13} = -\tilde{k}^2 \int_0^l dz \int_0^l dz' \sin \tilde{ka} \sin \tilde{ka}' \frac{e^{-ik_a(z - z')^2 + l^2 + d^2}}{(z - z')^2 + d^2)^{1/4}}$$

(71b)

A closed form expression for J_{11} can be obtained along the same lines as for the term I_{11}:

$$J_{11} = i \tilde{k} \left(-\frac{\pi^2 H}{2} - \ln(\tilde{k} + k_0) + \frac{\tilde{k}}{\tilde{k} + k_0} \left(\frac{1 + i\pi}{2} \right) \left(i\pi - \ln(\tilde{k}^2 - k_0^2) \right) \right)$$

$$-\tilde{k} \left(\frac{\tilde{k} + k_0 e^{-ik_a l_s}}{\tilde{k}^2 - k_0^2} \right) + \frac{1}{2} \left((1 + i\pi)E_1(ik_0 l_s - \pi) - (1 - i\pi)E_1(ik_0 l_s + i\pi) \right)$$

(72)

Comparisons between the approximation (72) and the exact result shows that the relative error is of order $(\tilde{k} d)^2$ (Fig. 5). The expression (72) is thus valid in all cases within the frame of our theoretical development. Following Appendix G, J_{13} can be written in a form that suits numerical integration:

$$J_{13} = -\tilde{k}^2 \left[\int_0^l dp \frac{e^{-ik_a(p^2 + l^2 + d^2)^{1/4}} [(l_s - p) \cos \tilde{k} p + \frac{\sin \tilde{k} p}{\tilde{k} \tilde{p}}]}{(p^2 + l_s^2 + d^2)^{1/4}} \right]$$

(73)

Since,

$$\int_{s_c} ds \vec{V}^2 = \frac{l_s l_p}{2}$$

(74)

the eigenvalue shift for the TM_{10} is given by equation (54):
\[
\begin{align*}
\kappa_{10}^2 - \kappa_{10}^2 &= \frac{2i\omega \mu_0 \mu_d}{\ell_{r} l_y} \left[\frac{i\omega \epsilon_0}{\pi} \left(I_{11} + I_{13} + I_{22} + I_{24} - F(\epsilon_r)(l_z + 2l_y) \right) \right] \\
&- \frac{i}{\pi \omega \mu_0} \left(J_{11} + J_{13} - F\left(\frac{1}{\mu_r}, \frac{\pi^2}{l_z^2}\right) \right)
\end{align*}
\] (75)

Interchanging \(l_r\) and \(l_y\), the above result gives directly the correction for the eigenvalue of the \(TM_{01}\) mode.

8. RESULTS FOR THE RECTANGULAR PATCH

In order to assess the value of our theory, it is essential to check it against experimental results and other theoretical approaches. By choosing published experimental data, we have minimized the risk of biased comparisons. Among the relatively large quantity of publications available, we have selected the measurements of Y.T. Lo and his group in Illinois because of their reliability and accessibility.

In [9], Y.T. Lo et al. present measured results for the resonant frequencies and \(Q\)-factors for different rectangular patches. An interesting feature is that the length of the non-radiating edge is kept constant. This provides a clear visualization of effects impossible to see with an "ideal" cavity model.

On the theoretical side, we have compared our approach with Carver's modal expansion model [27] and Kuester et al.'s wide patch analytical formulation [29]. To help the reader, we have collected the detailed calculations for all three theoretical models in Appendix H.

Fig. 6 shows the results for the resonant frequencies. Care must be exercised in interpreting the results. The theoretical curves are indeed very sensitive to minute changes in the dielectric constant of the substrate. It is thus not surprising that we do not see an overlap of experimental and theoretical curves. More meaningful is the relative position of the theoretical curves and the shape correlation of the curves between experimental and theoretical results.

Note the complete failure of the "ideal" cavity model to take into account variations in the length of the radiating edge \((l_y)\). Remark also the limitations of Carver's theory for wide patches. Finally, observe the good behavior of the present theory, which predicts the shape of the curve almost exactly without using any equivalent parameters such as edge extension or effective dielectric constant.

Fig. 7 shows the results for the \(Q\)-factor. Note the excellent agreement between our theory and the experimental results.

Although numerical integrations are needed in the present model, the required computational effort is very small. Typically, ten points in a Gaussian quadrature are more than enough.
Rectangular patch (mode TM_{10})

$\varepsilon_r = 2.62$, $d = 1.5875\text{mm}$, $l_x = 5.95\text{cm}$

(1) Experimental Results [9]
(2) Carver's Theory [27]
(3) Present Theory
(4) Kuester's Wide Patch Approximation [29]
(5) Ideal Cavity Model

Fig. 6. Resonant frequency. (Rectangular Patch).
Rectangular patch (mode TM_{10})

$\varepsilon_r = 2.62, \ d = 1.5875\ mm, \ l_x = 5.95\ cm$

$\tan \delta = 0.001$

(1) Experimental Results [9]
(2) Carver's Theory [27]
(3) Present Theory
(4) Kuester's Wide Patch Approximation [29]

Fig. 7. Q-factor. (Rectangular patch).
9. THEORY OF THE CIRCULAR PATCH ANTENNA

Because of the axial symmetry, the circular microstrip patch antenna has called for specialised analytical techniques. At the same time, people have adapted "classical" approaches, such as the cavity model, to this geometry.

Watkins [34] obtained first the resonant frequencies for a circular patch using an "ideal" cavity model. Next, attention was focused on quasi-static approaches to give corrections for the "fringing" field. A detailed account of earlier work to solve the static circular capacitor has been given by Kuester [35]. Numerical computations for the same problem have been presented by Itoh and Mittra [36]. Borkar and Yang [37], Coen and Gladwell [38] and Mosig [39] improved later the numerical formulation. Wolff and Knoppik [24] and Shen et al. [40] have given formulas for the resonant frequency based on this quasi-static approach.

Cavity model results have been presented by many authors. Long et al. [41], [42] and Derneryd [43] were the first to give such an analysis. Later, Carver [27], Richards et al. [10] and Yano and Ishimaru [44] refined the model. More recently, Davidovitz and Lo [45] have adapted the cavity model to thicker substrates.

Chew and Kong [46]-[49] have studied the resonance with various techniques. In particular, they have given asymptotic formulas valid for thin substrates [48], and have solved dual integral equations using a Hankel transform approach [49].

Araki and Itoh [50] have used a full wave analysis with spectral domain basis functions, and Wood [51] has employed a similar technique with spatial domain basis functions. Quite recently, Dubost and Beauquet [52] adapted a transmission-line type of approach to the circular patch.

Few numerical solutions based on the integral equation for patch current have been proposed, probably because of the difficulties in discretizing the circular surface in elementary cells. Agrawal and Bailey [53] considered the circular patch in their early approach with a homogeneous Green function. Butler [12] has presented a technique based on an aperture integral equation. Recently, Bailey and Deshpande [54] have looked specifically at the circular patch with a moment method solution.

In this section, we will compute the resonant frequency and the Q-factor of the dominant mode TM_{11} of the circular patch, based on expressions (54) and (57). Consider the geometry of the circular microstrip patch antenna shown in Fig. 8. The solution of the "ideal" cavity model is obtained by solving the wave equation (51) together with a Neumann boundary condition at the edge of the patch [55]. If R denotes the radius of the patch, the unperturbed wavenumber \tilde{k} is solution of the eigenvalue equation:

$$J_n(\tilde{k}R) = 0 \quad (76)$$

where J_n is the Bessel function of order n and the prime indicates the derivative with respect to the argument. Recalling a conventional notation [56],

$$\tilde{k} R = j_{n,m}'$$

(77)

where $j_{n,m}'$ is the m^{th} positive zero of J_n. For the dominant (non static) mode TM_{11},
\[\tilde{k}_{11} = \frac{j_{1,1}}{R} \] \hspace{1cm} (78)

with \(j_{1,1} = 1.8411837 \ldots \). The edge voltage \(\tilde{V} \) and its edge derivative \(\partial \tilde{V} / \partial t \) are given by

\[\tilde{V} = A_{11} d J_1\left(\frac{j_{1,1} \rho}{R}\right) \cos \phi \] \hspace{1cm} (79)

\[\frac{\partial \tilde{V}}{\partial t} = - \frac{A_{11} d}{R} J_1\left(\frac{j_{1,1} \rho}{R}\right) \sin \phi \] \hspace{1cm} (80)

where \(A_{11} \) is an arbitrary mode amplitude factor. Without loss of generality, we can set this amplitude coefficient to unity. The correction for the eigenvalue is given by equation (54):

\[k_{11}^2 - \tilde{k}_{11}^2 = \frac{i \omega \mu_0 \mu_r d (N_1 + N_2)}{I_s} \] \hspace{1cm} (81)

where
\[I_s = \int_{S_c} ds \mathbf{V}'^2 \] (82)

while the terms \(N_1 \) and \(N_2 \) are given by (55) and (56). For the circular geometry,

\[N_1 = \frac{i \omega \epsilon_0}{2\pi} I_C - \frac{i \omega \epsilon_0}{\pi} \oint \phi \frac{\partial}{\partial l'} \mathbf{V}'^2 (l') \] (83)

where the coupling integral \(I_C \) is given by

\[I_C = \oint \phi \oint \phi' \mathbf{a}_l \cdot \mathbf{a}_{l'} \mathbf{V}(l) \mathbf{V}(l') G_d(l,l') \] (84)

Similarly,

\[N_2 = \frac{-i}{2\pi \omega \mu_0} J_C + \frac{i}{\pi \omega \mu_0} \oint \phi \frac{\partial}{\partial l} \left(\frac{\partial \mathbf{V}}{\partial l} \right)^2 \] (85)

with the coupling integral

\[J_C = \oint \phi \oint \phi' \frac{\partial \mathbf{V}}{\partial l} \frac{\partial \mathbf{V}}{\partial l'} G_d(l,l') \] (86)

The three integrals \(I_C, J_C \) and \(I_S \) are computed in Appendix I:

\[I_C = 2\pi \left[dR J_1(j_{1,1}^') \right]^2 \left[\frac{2K\left(\frac{4R^2}{4R^2 + d^2} \right)}{\left(\frac{4R^2}{4R^2 + d^2} \right)^\frac{3}{2}} + \int_0^\pi d\alpha \frac{\cos^2 \alpha \epsilon^{-ik\left(\frac{4R^2 \sin^2(\alpha/2) + d^2}{4R^2 \sin^2(\alpha/2) + d^2} \right)^\frac{3}{2}}}{1} \right] \] (87)

where \(K \) is the complete elliptic integral of the first kind, whose argument (following Milne-Thomson) is taken as the modulus squared \([57]\);

\[J_C = 2\pi d^2 J_1^2(j_{1,1}^') \left[\frac{2K\left(\frac{4R^2}{4R^2 + d^2} \right)}{\left(\frac{4R^2}{4R^2 + d^2} \right)^\frac{3}{2}} + \int_0^\pi d\alpha \frac{\cos \alpha \epsilon^{-ik\left(\frac{4R^2 \sin^2(\alpha/2) + d^2}{4R^2 \sin^2(\alpha/2) + d^2} \right)^\frac{3}{2}}}{1} \right] \] (88)

and

\[I_S = \frac{\pi d^2 R^2}{2} \left(1 - \frac{1}{j_{1,1}^2} \right) J_1^2(j_{1,1}^') \] (89)

The remaining integrals in equations (83) and (85) are straightforward

\[\oint \phi \frac{\partial \mathbf{V}}{\partial l'} \mathbf{V}'^2 (l') = \pi d^2 R J_1^2(j_{1,1}^') \] (90)

\[\oint \phi \frac{\partial \mathbf{V}}{\partial l'} \right)^2 = \frac{\pi d^2}{R} J_1^2(j_{1,1}^') \] (91)

We then have all the terms we need to compute directly the eigenvalue shift from equation (81).
10. RESULTS FOR THE CIRCULAR PATCH ANTENNA

We have compared our theoretical results for the dominant mode TM_{11} with experimental data and Carver's modal expansion theory [27]. Unlike the rectangular patch, complete data for the resonant frequencies and Q-factors are not widely available. Long et al. [41], [42] and Wood [51] have however published fairly detailed results. We have chosen the latter for direct comparisons against our theory.

We again have used Carver's modal expansion model [27] as theoretical comparison. His results, based on some empirical considerations, have usually proved to be in good agreement with measurements. To help the reader, we have collected the detailed calculations for the two theoretical models in Appendix J.

Fig. 9 shows the resonant frequency of a circular patch versus the ratio of the radius of the patch to the height of the substrate. Fig. 10 gives the Q-factor for the same patch. Note that for small thicknesses d, the Q-factor, as expected, grows substantially. As a consequence, we cannot neglect conduction losses any more. James et al. [58] give a simple way to take care of this effect efficiently. Through an equivalent conductance loss Q-factor, they are able to match experimental results for high Q's. The same technique can easily be applied to our results.

11. CONCLUSION

A new approach has been applied here to the analysis of arbitrarily shaped microstrip resonators and antennas. The model yields a generalized boundary condition at the edge of a microstrip patch. Unlike previous theories, this GEBC has contributions from the whole contour of the structure taking care of mutual coupling effects.

Based on this GEBC, we can analyse arbitrarily patches after a segmentation of the contour. Successful results will be presented in a forthcoming report and a soon to be published technical paper [59].

Directly from this GEBC, we have developed a perturbation approach for computing resonant frequencies and Q-factors for geometries where the wave equation has a closed-form solution. Simple expressions have been given for the dominant modes of the rectangular and circular patches. Theoretical results agree well with experimental results. In particular, computed Q-factors are always in much better agreement with experimental data than the modal expansion model.

The absence of artificial parameters such as edge extensions, the accuracy of the results and the relative simplicity of the computations make the approach described in this report very suitable for the analysis of microstrip antennas and resonators in a CAD context.
Circular patch (dominant mode TM$_{11}$)
Ratio of the true resonant frequency f to the ideal cavity model resonant frequency \bar{f}
$\varepsilon_r = 2.32$, $\tan \delta = 0.001$
(1) Carver's theory [27]
(2) Present theory
(3) Experimental results [51]

Fig. 9. Resonant frequency. (Circular patch).
Circular patch (dominant mode TM_{11})
$\varepsilon_r = 2.32$, $\tan \delta = 0.001$

(1) Carver's theory [27]
(2) Present theory
(3) Experimental results [51]

Fig. 10. Q-factor. (Circular patch).
REFERENCES

[73] M. Abramowitz and I.A. Stegun, editors, Handbook of mathematical functions. New York: Dover, 1972, [5.2.1] and [5.2.2].

APPENDIX A

In this appendix, we calculate two simple Green functions for the half-space and parallel plate problems. First, \(G_1 \) is solution of

\[
[\nabla^2 + k_0^2] G_1 = -\delta(\hat{r} - \hat{r}')
\]

with a Neumann boundary condition at \(z = d \)

\[
\frac{\partial G_1}{\partial z} \bigg|_{z=d} = 0 \quad ; \quad \forall \hat{\rho}
\]

We can replace the boundary condition by an image charge at:

\[
\hat{r}'' = \hat{a}_x \, x' + \hat{a}_y \, y' + \hat{a}_z (2d - z')
\]

Hence, the Green function \(G_1 \) can be replaced by the sum of two free-space Green functions:

\[
G_1 = G_1' + G_1''
\]

which satisfy

\[
[\nabla^2 + k_0^2] G_1' = -\delta(\hat{r} - \hat{r}')
\]

\[
[\nabla^2 + k_0^2] G_1'' = -\delta(\hat{r} - \hat{r}'')
\]

Thus, we recall the well known free-space Green function [60], and we have

\[
4\pi G_1 = \frac{e^{-ik_0((z-z')^2 + (y-y')^2 + (z-z')^2)^{1/2}}}{((z-z')^2 + (y-y')^2 + (z-z')^2)^{1/2}} + \frac{e^{-ik_0((z-z')^2 + (y-y')^2 + (z+z'-2d)^2)^{1/2}}}{((z-z')^2 + (y-y')^2 + (z+z'-2d)^2)^{1/2}}
\]

Second, \(G_2 \) is solution of

\[
[\nabla^2 + k^2] G_2 = -\delta(\hat{r} - \hat{r}')
\]

with a Neumann boundary condition on the interface \(z = d \) and ground plane \(z = 0 \)

\[
\frac{\partial G_2}{\partial z} \bigg|_{z=0,d} = 0 \quad ; \quad \forall \hat{\rho}
\]

Keeping in mind the boundary condition (A5) and the symmetry of the Green function with respect to \(z \) and \(z' \), we can express \(G_2 \) as a double cosine series:

\[
G_2 = \sum_{m=-\infty}^{\infty} \cos \frac{m \pi z}{d} \cos \frac{m \pi z'}{d} \, g_{2m}(z, y; z', y')
\]

Then, the wave equation (A4) becomes
\[\sum_{m=0}^{\infty} \left[k^2 \frac{m^2 \pi^2}{d^2} + \nabla_i^2 \right] \cos \frac{m \pi x}{d} \cos \frac{m \pi x'}{d} g_{2m} = -\delta(x-x') \delta(y-y') \delta(z-z') \]
\tag{A7}

where \(\nabla_i \) is the transverse operator

\[\nabla_i = \hat{a}_x \frac{\partial}{\partial x} + \hat{a}_y \frac{\partial}{\partial y} \]

It is a classical procedure to multiply both sides of (A7) by \(\cos \frac{n \pi x'}{d} \) and then integrate from 0 to \(d \) with respect to the variable \(z' \). Then

\[d \left[\nabla_i^2 - \frac{n^2 \pi^2}{d^2} + k^2 \right] g_{2n} = -\epsilon_n \delta(x-x') \delta(y-y') \]
\tag{A8}

where \(\epsilon_n \) is the Neumann factor [61]:

\[\epsilon_n = \begin{cases} 1 & ; \ n = 0 \\ 2 & ; \ n > 0 \end{cases} \]

Now (A8) is of the generic form

\[[\nabla_i^2 + k^2] A = -\delta(\hat{\rho} - \hat{\rho}') \]
\tag{A9}

which has a well-known solution [60]:

\[A = -\frac{i}{4} H_0^{(1)}(k |\hat{\rho} - \hat{\rho}'|) \]
\tag{A10}

If we compare (A9) and (A10), it follows directly that

\[g_{2m} = -\frac{i \epsilon_m}{4d} H_0^{(1)} \left((k^2 - \frac{m^2 \pi^2}{d^2}) \frac{k}{|\hat{\rho} - \hat{\rho}'|} \right) \]
\tag{A11}

where the branch of the square root is chosen so as to satisfy the radiation condition [62]:

\[(k^2 - \frac{m^2 \pi^2}{d^2})^\frac{k}{d^2} = -i \left(\frac{m^2 \pi^2}{d^2} - k^2 \right) \]
\tag{A12}

Finally,

\[G_2 = -\frac{i}{4d} \sum_{m=0}^{\infty} \epsilon_m \cos \frac{m \pi x}{d} \cos \frac{m \pi x'}{d} H_0^{(1)} \left((k^2 - \frac{m^2 \pi^2}{d^2}) \frac{k}{|\hat{\rho} - \hat{\rho}'|} \right) \]
\tag{A13}
APPENDIX B

In this appendix, we accurately approximate the four terms R_{11}, R_{12}, R_{21} and R_{22} given by (30)-(33). Theoretical comments regarding the justification of the approximations can be found in two relevant mathematical papers [63], [64].

Term R_{11}

\[
R_{11} = \frac{i \omega \epsilon_0}{2\pi} \int_0^\infty \int \frac{d\hat{\rho} \cdot d\hat{\rho}'}{4\pi} \left(E_0(\hat{\rho})E_0(\hat{\rho}') \right) \tilde{\alpha}_1 \cdot \tilde{\alpha}_i dl \Lambda(l) \tilde{\alpha}_i \frac{\delta^{\alpha - \beta}}{\delta^{\alpha - \beta}} \frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} \frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} (B1)
\]

In order to approximate (B1), we simultaneously add and subtract a carefully chosen term to the integrand:

\[
R_{11} = \frac{i \omega \epsilon_0}{2\pi} \int_0^\infty \int \frac{d\hat{\rho} \cdot d\hat{\rho}'}{4\pi} \left(E_0(\hat{\rho})E_0(\hat{\rho}') \right) \tilde{\alpha}_1 \cdot \tilde{\alpha}_i dl \Lambda(l) \tilde{\alpha}_i \left[\frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} - \frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} \right] (B2)
\]

where $\hat{\rho}' (\hat{\rho} = 0, \hat{\rho}')$ is the point on $\hat{\rho}$ corresponding to the point $\hat{\rho}' (\hat{\rho}, \hat{\rho}')$ as shown in Fig. B1. In splitting the kernel in this way, we have achieved two things. First, the kernel:

\[
\frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} (\delta^{\alpha - \beta}) \text{ is independent of } \hat{\rho}'.
\]

Second, the difference kernel:

\[
\frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} - \frac{e^{-i\epsilon_0 \delta^{\alpha - \beta}}}{\delta^{\alpha - \beta}} \text{ decays very rapidly as source and observation points move apart, since it is of order } (d/|\hat{\rho} - \hat{\rho}'|^2) \text{ and } (k_0 d/|\hat{\rho} - \hat{\rho}'|) \text{ when } |\hat{\rho} - \hat{\rho}'| \gg d \text{ and } n' = O(d).
\]

Note that the parameter d introduced in the kernel, the actual height of the substrate, is quite arbitrary at that point. Any small distance of order d, provided we remain consistent from here on would do. However, this particular choice has both advantages of simplifying the calculations and providing a good physical picture. Because of the quick decay of the difference kernel, we can assume that the integrand is of significant magnitude only when $|\hat{\rho} - \hat{\rho}'|$ is small, i.e.

\[
\tilde{\alpha}_i \approx \tilde{\alpha}_i' \quad \Lambda(l) \approx \Lambda(l') (B3)
\]

If we substitute (B3) into (B2) and rearrange, then
\[R_{11} = \frac{i \omega \epsilon_0}{2\pi} \int_0^\infty d\rho' \, E_{\text{on}}(\rho') \hat{f} \frac{dl'}{\rho} \, V(l') \hat{a}_l' \cdot \frac{\hat{f} \, dl \, \Lambda(l) \hat{a}_l}{\rho} e^{-i \kappa_z (|\rho - \rho|^2 + d^2)u} \]

\[+ \frac{i \omega \epsilon_0}{2\pi} \int_0^\infty d\rho' \, E_{\text{on}}(\rho') \hat{f} \frac{dl'}{\rho} \, V(l') \Lambda(l') \hat{f} \, dl \left[\frac{e^{-i \kappa_z |\rho - \rho'|}}{|\rho - \rho'|} - \frac{e^{-i \kappa_z (|\rho - \rho'|^2 + d^2)u}}{(|\rho - \rho'|^2 + d^2)u} \right] \quad (B4) \]

The inner integral of the second term in the right-hand side of (B4) is evaluated in Appendix C and thus we can write

\[R_{11} = \frac{i \omega \epsilon_0}{2\pi} \int_0^\infty d\rho' \, E_{\text{on}}(\rho') \hat{f} \frac{dl'}{\rho} \, V(l') \hat{a}_l' \cdot \frac{\hat{f} \, dl \, \Lambda(l) \hat{a}_l}{\rho} e^{-i \kappa_z (|\rho - \rho|^2 + d^2)u} \]

\[- \frac{i \omega \epsilon_0}{\pi} \int_0^\infty d\rho' \, E_{\text{on}}(\rho') \ln \left(\frac{\rho'}{d} \right) \hat{f} \frac{dl'}{\rho} \, \Lambda(l') \, V(l') \quad (B5) \]

Term R_{12}

\[R_{12} = \frac{\omega \epsilon_\eta \epsilon_\tau}{2d} \sum_{m=1}^{\infty} \int_0^\infty \hat{a}_n \cdot \hat{f} \frac{dl'}{\rho} \, V(l') E_{\text{on}}(\rho') \hat{a}_l' \cdot \frac{\hat{f} \, dl \, \Lambda(l) \hat{a}_l}{\rho} \, \mathbf{H}_0^{(1)} \left(\left(k^2 - \frac{m^2 \pi^2}{d^2} \right) |\rho - \rho'| \right) \quad (B6) \]
Because of the electrically thin substrate, only the dominant parallel-plate mode propagates without attenuation:

\[k^2 < \frac{\pi^2}{d^2} \]

Therefore it is more convenient to write [65]:

\[
H_0^{(1)}(-i \left(\frac{m^2\pi^2}{d^2} - k^2 \right)^{\frac{\delta}{2}} |\hat{\rho} - \hat{\rho}'|) = \frac{2i}{\pi} K_0 \left((\frac{m^2\pi^2}{d^2} - k^2)^{\frac{\delta}{2}} |\hat{\rho} - \hat{\rho}'| \right) \tag{B7}
\]

where \(K_0 \) is the modified Bessel function of the second kind of order 0. Since \(K_0 \) decays exponentially as its real argument increases, we can use the approximations (B3). Then

\[
R_{12} = \frac{i \omega \varepsilon_0 \varepsilon_r}{\pi d} \int_{0}^{\infty} dn' \int_{P} dl' \Lambda(l') V(l') E_{0n}(n') \sum_{m=1}^{\infty} \hat{f}_m dl K_0 \left((\frac{m^2\pi^2}{d^2} - k^2)^{\frac{\delta}{2}} |\hat{\rho} - \hat{\rho}'| \right) \tag{B8}
\]

The infinite summation is evaluated in Appendix D. We finally have the result

\[
R_{12} = -\frac{i \omega \varepsilon_0 \varepsilon_r}{\pi} \int_{0}^{\infty} dn' E_{0n}(n') \ln(1 - e^{-x n'/d}) \hat{f} dl' \Lambda(l') V(l') \tag{B9}
\]

Term R_{21}

\[
R_{21} = -\frac{i}{2\pi \omega \mu_0} \int_{0}^{\infty} dn' \hat{f}_m dl' \frac{\partial V}{\partial l'} H_{0z}(n') \hat{f}_m dl A(l) \hat{a}_l \cdot \nabla' \left[\frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'|}}{|\hat{\rho} - \hat{\rho}'|} \right] \tag{B10}
\]

Directly from the symmetry of the Green function with respect to source and observation points:

\[
\nabla' G_1 = -\nabla G_1 \tag{B11}
\]

We can split the kernel like in (B2). Then, we have

\[
R_{21} = \frac{i}{2\pi \omega \mu_0} \int_{0}^{\infty} dn' \hat{f}_m dl' \frac{\partial V}{\partial l'} H_{0z}(n') \hat{f}_m dl A(l) \frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'|}}{|\hat{\rho} - \hat{\rho}'|} \left[\frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'| + d^2}}{|\hat{\rho} - \hat{\rho}'|} \right] - \frac{i}{2\pi \omega \mu_0} \int_{0}^{\infty} dn' \hat{f}_m dl' \frac{\partial V}{\partial l'} H_{0z}(n') \hat{f}_m dl A(l) \frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'|}}{|\hat{\rho} - \hat{\rho}'|} \left[\frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'| + d^2}}{|\hat{\rho} - \hat{\rho}'|} \right] \tag{B12}
\]

where we have approximated \(\hat{a}_l \approx \hat{a}_l' \) in the second term on the right-hand side because of the quickly decaying kernel. Also, in the same term, we can take the \(l' \) derivative out of the inner integral, and then integrate by parts on \(l' \):

\[
R_{21} = \frac{i}{2\pi \omega \mu_0} \int_{0}^{\infty} dn' H_{0z}(n') \hat{f}_m dl' \frac{\partial V}{\partial l'} \hat{f}_m dl A(l) \frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'| + d^2}}{|\hat{\rho} - \hat{\rho}'|} \left[\frac{e^{-ik_0 |\hat{\rho} - \hat{\rho}'| + d^2}}{|\hat{\rho} - \hat{\rho}'|} \right]
\]
\[-\frac{i}{\pi \omega \mu_0} \int_0^\infty \!dn' H_{0z}(n') \ln \left(\frac{n'}{d} \right) \hat{p} \! \cdot \! dl' \Lambda(l') \frac{\partial^2 V}{\partial l'^2} \]

(B13)

Because of the rapidly decaying kernel, we have substituted $\Lambda(l)$ for $\Lambda(l')$. We also have recalled the result of Appendix C for the inner integral of the second term in the right-hand side of (B13).

Term R_{22}

\[
R_{22} = -\frac{i}{\pi \omega \mu_0 \mu \cdot d} \sum_{m=1}^\infty \int_0^\infty \!dn' \hat{p} \! \cdot \! dl' \frac{\partial V}{\partial l'} H_{0z}(n') \hat{p} \! \cdot \! dl \Lambda(l) \tilde{a}_l \cdot \nabla \cdot [K_0 \left(\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\mu}{2}} |\hat{\rho} - \hat{\rho}'| \right)]
\]

(B14)

Again because of the rapidly decaying kernel in the inner integral, we can use the approximation (B3). Then, we obtain

\[
R_{22} = -\frac{i}{\pi \omega \mu_0 \mu \cdot d} \sum_{m=0}^\infty \int_0^\infty \!dn' H_{0z}(n') \hat{p} \! \cdot \! dl' \frac{\partial V}{\partial l'} \frac{\partial}{\partial l'} \hat{p} \! \cdot \! dl \Lambda(l) K_0 \left(\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\mu}{2}} |\hat{\rho} - \hat{\rho}'| \right)
\]

(B15)

We can integrate the above expression by parts with respect to l'

\[
R_{22} = -\frac{i}{\pi \omega \mu_0 \mu \cdot d} \int_0^\infty \!dn' H_{0z}(n') \ln \left(1 - e^{-x_k/d} \right) \hat{p} \! \cdot \! dl' \Lambda(l') \frac{\partial^2 V}{\partial l'^2}
\]

(B16)

where we have called back the result for the inner integral developed in Appendix D.
APPENDIX C

In this appendix, we derive an accurate approximation for the integral

\[I = \oint \frac{dl}{p} \left[\frac{e^{-ik_q|\dot{\rho} - \dot{\rho}^*|}}{|\dot{\rho} - \dot{\rho}^*|} - \frac{e^{-ik_q(|\dot{\rho} - \rho_0^*|^2 + d^2)}}{(|\dot{\rho} - \rho_0^*|^2 + d^2)^{\frac{\mu}{2}}} \right] \quad (C1) \]

The integrand is rapidly decaying as $|\dot{\rho} - \dot{\rho}^*|$ increases. Thus, we can justify the following approximations (see fig. B1):

\[|\dot{\rho} - \dot{\rho}^*| \simeq (|l - l'|^2 + n^*2)^{\mu} \quad (C2) \]

\[|\dot{\rho} - \rho_0^*| \simeq |l - l'| \quad (C3) \]

Also because of this rapid decay of the kernel, we can safely extend the integration limits from $l = -\infty$ to $l = \infty$. It follows that (C1) becomes

\[I = \int_{-\infty}^{\infty} dl \left[\frac{e^{-ik_q(|l - l'|^2 + n^*2)^{\mu}}}{(|l - l'|^2 + n^*2)^{\mu}} - \frac{e^{-ik_q(|l - l'|^2 + d^2)}}{(|l - l'|^2 + d^2)^{\mu}} \right] \quad (C4) \]

At this point, we recall an integral representation of the Hankel function of the first kind of order zero [66]:

\[i\pi H_0^{(1)}(\mu) = \int_{-\infty}^{\infty} dx \frac{e^{i\mu\sqrt{1 + x^2}}}{\sqrt{1 + x^2}} \quad (C5) \]

Therefore,

\[\int_{-\infty}^{\infty} dl \frac{e^{-ik_q(|l - l'|^2 + n^*2)^{\mu}}}{(|l - l'|^2 + n^*2)^{\mu}} = i\pi H_0^{(1)}(-k_0n^*) = -i\pi H_0^{(1)}(k_0n^*) \quad (C6) \]

We now use the result (C6) into the expression (C4):

\[I = i\pi \left\{ H_0^{(1)}(k_0d) - H_0^{(1)}(k_0n^*) \right\} \quad (C7) \]

Furthermore, since both k_0d and k_0n^* are small in the range where the integrand is significant, we can use the small argument expansion for the Hankel function [67]:

\[H_0^{(1)}(z) = 1 - \frac{2i}{\pi} \left(\ln \frac{z}{2} + \gamma \right) + O(z^2 \ln z) \]

and we finally have

\[I = -2\ln\left(\frac{n^*}{d}\right) \quad (C8) \]
APPENDIX D

In this appendix, we derive an accurate approximation for the summation

\[S = \sum_{m=1}^{\infty} \int_{p}^{\infty} dl \ K_0 \left(\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\nu}{2}} |\hat{p} - \hat{p}'| \right) \] \hspace{1cm} (D1)

Because of the exponential decay along the real axis as \(|\hat{p} - \hat{p}'|\) increases, we can justify the following approximation (see fig. B1):

\[|\hat{p} - \hat{p}'| \approx ((l - l')^2 + n'^2)^{\frac{\nu}{2}} \] \hspace{1cm} (D2)

Also, with the same kind of approximation, we can extend the integration limits from \(l = -\infty\) to \(l = \infty\)

\[S = \sum_{m=1}^{\infty} \int_{-\infty}^{\infty} dl \ K_0 \left(\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\nu}{2}} ((l - l')^2 + n'^2)^{\frac{\nu}{2}} \right) \] \hspace{1cm} (D3)

Recall the following result [68]:

\[\int_{-\infty}^{\infty} dz \ K_0(\alpha \sqrt{z^2 + z'^2}) = \frac{\pi}{\alpha} e^{-\alpha z} \] \hspace{1cm} (D4)

where we have used the identity [69]:

\[K_{-\frac{\nu}{2}}(\alpha z) = \left(\frac{\pi}{2\alpha z} \right)^{\frac{\nu}{2}} e^{-\alpha z} \]

The summation \(S\) can now be rewritten as follows

\[S = \sum_{m=1}^{\infty} \frac{\pi}{\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\nu}{2}}} e^{-\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\nu}{2}} n'} \] \hspace{1cm} (D5)

Using small \(kd\) approximation,

\[\left(\frac{m^2 \pi^2}{d^2} - k^2 \right)^{\frac{\nu}{2}} \approx \frac{m \pi}{d} \]

we have the result

\[S = \sum_{m=1}^{\infty} \frac{d}{m} e^{-\frac{m \pi n'}{d}} = -d \ln(1 - e^{-\pi n'/d}) \] \hspace{1cm} (D6)
APPENDIX E

In this appendix, we will derive a small \((k_0d)\) approximation of the integral \(I_{11}\)

\[
I_{11} = \int_0^{l_1} \int_0^{l_1} dz \, dz' \cos k z \cos k' z' \frac{e^{-ik_0((z-z')^2 + d^2)^{\kappa}}}{((z-z')^2 + d^2)^{\kappa}}
\]
(E1)

We first recall a well-known spectral representation of the kernel [70]:

\[
\frac{e^{-ik_0((z-z')^2 + d^2)^{\kappa}}}{((z-z')^2 + d^2)^{\kappa}} = -\frac{i}{2} \int_0^\infty d\lambda \ H_0^{(1)}(d(k_0^2 - \lambda^2)^{\kappa}) e^{-i\lambda(z - z')}
\]
(E2)

with the branch of the square root defined as

\[
\text{Im} \left[d(k_0^2 - \lambda^2)^{\kappa} \right] \leq 0
\]
(E3)

The integration path in the complex \(\lambda\)-plane is shown in Fig. E1. Note that the proper sheet is defined by the condition (E3). Remark also that the logarithmic branch cut in the \((k_0^2 - \lambda^2)^{\kappa}\)-plane maps into the square root branch cuts in the \(\lambda\)-plane, so that there is no additional branch cut. (Fig. E2). Now introduce the spectral representation (E2) into expression (E1) and interchange the integrals to obtain

\[
I_{11} = -\frac{i}{2} \int_0^\infty d\lambda \ H_0^{(1)}(d(k_0^2 - \lambda^2)^{\kappa}) \int_0^{l_1} dz \cos k z \cos k' z' e^{-i\lambda z} \int_0^{l_1} dz' \cos k z' e^{i\lambda z'}
\]
(E4)

We can easily calculate the \(z\) and \(z'\) integrals

\[
\int_0^{l_1} dz \cos k z \ e^{-i\lambda z} = \frac{i\lambda(1 + e^{-i\lambda l_1})}{k^2 - \lambda^2}
\]
(E5)

Thus,

\[
I_{11} = -i \int_0^\infty d\lambda \ H_0^{(1)}(d(k_0^2 - \lambda^2)^{\kappa}) \left(\frac{\lambda^2(1 + \cos \lambda l_1)}{(k^2 - \lambda^2)^2} \right)
\]
(E6)

Since, by hypothesis, \((k_0d)\ll 1\), we can presumably use the small argument expansion of the Hankel function [67]:

\[
H_0^{(1)}(d(k_0^2 - \lambda^2)^{\kappa}) = H - \frac{2i}{\pi} \ln (k_0^2 - \lambda^2)^{\kappa} + O\left((k_0d)^2 \ln (k_0d) \right)
\]
(E7)

where we have defined the constant

\[
H = 1 - \frac{2i}{\pi} (\gamma + \ln(d/2))
\]
(E8)

and \(\gamma\) is Euler's constant 0.57721... Therefore, we can split \(I_{11}\) into four terms:
Fig. E1. Situation in the λ-plane.

\[I_{11} = -i \, H \, (I_A + I_B) - \frac{2}{\pi} \left(I_C + I_D \right) \] \hspace{1cm} (E9)

where

\[I_A = \int_{-\infty}^{\infty} d\lambda \, \frac{\lambda^2}{(\bar{\lambda}^2 - \lambda^2)^2} \] \hspace{1cm} (E10)

\[I_B = \int_{-\infty}^{\infty} d\lambda \, \frac{\lambda^2 \cos \lambda l_\perp}{(\bar{\lambda}^2 - \lambda^2)^2} \] \hspace{1cm} (E11)
\[I_C = \int_{-\infty}^{\infty} d\lambda \frac{1}{\lambda^2} \ln (k^2_\delta - \lambda^2) \frac{\lambda^2}{(\bar{k}^2 - \lambda^2)^2} \]

(E12)

\[I_D = \int_{-\infty}^{\infty} d\lambda \frac{\lambda^2 \cos \lambda \bar{\lambda}}{(\bar{k}^2 - \lambda^2)^2} \]

(E13)

along the integration path shown in Fig. E1.

Integral \(I_A \)

By direct application of the Residue Theorem [71]:

\[I_A = \int_{-\infty}^{\infty} d\lambda \frac{\lambda^2}{(\bar{k}^2 - \lambda^2)^2} = -2\pi i \text{ Res}_{\lambda = \bar{k}} \left[\frac{\lambda^2}{(\bar{k}^2 - \lambda^2)^2} \right] = -\frac{i\pi}{2\bar{k}} \]

(E14)

Integral \(I_B \)

We can rewrite \(I_B \) as

\[I_B = \int_{-\infty}^{\infty} d\lambda \frac{\lambda^2 \cos \lambda \bar{\lambda}}{(\bar{k}^2 - \lambda^2)^2} = \int_{-\infty}^{\infty} d\lambda \frac{\lambda^2 e^{i\lambda \bar{\lambda}}}{(\bar{k}^2 - \lambda^2)^2} \]

(E15)

We also use the residue theorem, closing the contour in the upper half-plane,

\[I_B = 2\pi i \text{ Res}_{\lambda = \bar{k}} \left[\frac{\lambda^2 e^{i\lambda \bar{\lambda}}}{(\bar{k}^2 - \lambda^2)^2} \right] = \frac{i\pi e^{-i\bar{k} \lambda}}{2\bar{k}} (i\bar{k} \lambda - 1) \]

(E16)

Integral \(I_C \)

\[I_C = \int_{-\infty}^{\infty} d\lambda \frac{1}{\lambda^2} \ln (k^2_\delta - \lambda^2) \frac{\lambda^2}{(\bar{k}^2 - \lambda^2)^2} \]

Again, we choose to use the Residue Theorem, closing the contour in the upper half-plane. This time, we get both a residue and a branch cut contribution, as shown in Fig. E3.

\[I_C = 2\pi i \text{ Res}_{\lambda = \bar{k}} \left[\frac{\ln (k^2_\delta - \lambda^2) \lambda^2}{(\bar{k}^2 - \lambda^2)^2} \right] + I_{bc} \]

\[= \frac{i\pi}{2(k^2_\delta - \bar{k}^2)} - \frac{i\pi \ln (k^2_\delta - \bar{k}^2)^8}{2\bar{k}} + I_{bc} \]

(E17)

where the branch cut integral is given by

\[I_{bc} = \int_{-\kappa}^{\kappa} ds \frac{-s (k^2_\delta - s^2) \ln s}{s^2 - k^2_\delta + (s^2 - k^2_\delta + \bar{k}^2)^2} + \int_{-\kappa}^{0} ds \frac{s (k^2_\delta - s^2) \ln s}{(k^2_\delta - s^2)^8 (s^2 - k^2_\delta + \bar{k}^2)^2} \]
Fig. E2. Situation in the \((k_0^2 - \lambda^2)^4\) plane.

\[
\frac{k_0}{0} ds \frac{s \left(k_0^2 - s^2\right) \ln s}{(k_0^2 - s^2)^4 (s^2 - k_0^2 + \bar{k}^2)^2} + \int_{k_0}^{\infty} ds \frac{-s \left(k_0^2 - s^2\right) \ln s}{i (s^2 - k_0^2)^4 (s^2 - k_0^2 + \bar{k}^2)^2}
\]

and \(s\) is a real parameter along the branch cut defined as

\[
s = (k_0^2 - \lambda^2)^4
\]

To stay on the proper sheet, we require
\[\text{arg}(s) = -\pi \quad \text{if} \ s < 0 \]

(E19)

After some straightforward manipulations,

\[I_{bc} = i\pi \int_0^{k_0} ds \frac{s(k_0^2 - s^2)^\nu}{(s^2 - k_0^2 + \bar{k}^2)^2} + \pi \int_{k_0}^\infty ds \frac{s(s^2 - k_0^2)^\nu}{(s^2 - k_0^2 + \bar{k}^2)^2} \]

(E20)

These two integrals are computed in appendix F,

\[\int_0^{k_0} ds \frac{s(k_0^2 - s^2)^\nu}{(s^2 - k_0^2 + \bar{k}^2)^2} = \frac{k_0}{2(k^2 - k_0^2)} - \frac{1}{4k} \ln\left(\frac{\bar{k} - k_0}{k - k_0}\right) \]

(E21)

and,

\[\int_{k_0}^\infty ds \frac{s(s^2 - k_0^2)^\nu}{(s^2 - k_0^2 + \bar{k}^2)^2} = \frac{\pi}{4k} \]

(E22)

The branch cut contribution can now be written in closed form:

\[I_{bc} = \frac{i\pi k_0}{2(k^2 - k_0^2)} - \frac{i\pi}{4k} \ln\left(\frac{\bar{k} + k_0}{k - k_0}\right) + \frac{\pi^2}{4k} \]

(E23)

Adding the residue contribution, we write

\[I_C = -\frac{i\pi}{2} \left[\frac{1}{k + k_0} + \frac{\ln(k_0^2 - \bar{k}^2)^\nu}{k} + \frac{1}{2k} \ln\left(\frac{\bar{k} + k_0}{k - k_0}\right) + \frac{i\pi}{2k} \right] \]

(E24)

On the proper sheet of the \(\lambda\)-plane,

\[\ln(k_0^2 - \bar{k}^2)^\nu = -\frac{i\pi}{2} + \frac{1}{2} \ln(\bar{k}^2 - k_0^2) \]

(E25)

Thus, we finally have

\[I_c = -\frac{i\pi}{2} \left(\frac{1}{k + k_0} + \frac{\ln(\bar{k} + k_0)}{\bar{k}} \right) \]

(E26)

Integral \(I_D \)

We can rewrite \(I_D \) as

\[I_D = \int_{-\infty}^{\infty} d\lambda \ln(k_0^2 - \lambda^2)^\nu \frac{\lambda^2 \cos\lambda\lambda}{(\bar{k}^2 - \lambda^2)^2} = \int_{-\infty}^{\infty} d\lambda \ln(k_0^2 - \lambda^2)^\nu \frac{\lambda^2 e^{i\lambda\lambda}}{(\bar{k}^2 - \lambda^2)^2} \]

We close the contour in the upper half-plane, to obtain
\[I_D = 2\pi i \operatorname{Res}_{\lambda = -\tilde{k}} \left[\ln (k_0^2 - \lambda^2) \frac{\lambda^2 e^{i\lambda l_s}}{(k^2 - \lambda^2)^2} \right] + I_{bc} \]

\[I_{bc} = \int_{-\infty}^{s_t} ds \frac{s \ln s (k_0^2 - s^2) e^{-i(s^2 - k_0^2)l_s}}{i(s^2 - k_0^2)^2(s^2 - k_0^2 + \tilde{k}^2)^2} + \int_{-\lambda_t}^{0} ds \frac{s \ln s (k_0^2 - s^2) e^{-i(k_0^2 - s^2)l_s}}{(k_0^2 - s^2)^2(s^2 - k_0^2 + \tilde{k}^2)^2} \]

where

Fig. E3. Integration contour.
\[
I_{bc} = i \pi \int_0^{k_0} ds \frac{s(k_0^2 - s^2)^{\frac{1}{2}} e^{-i(k_0^2 - s^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2} + \pi \int_{k_0}^\infty ds \frac{s(k_0^2 - s^2)^{\frac{1}{2}} e^{-(s^2 - k_0^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2}
\]

with \(s \) defined as in (E18) and (E19). We find
\[
I_{bc} = i \pi \int_0^{k_0} ds \frac{s(k_0^2 - s^2)^{\frac{1}{2}} e^{-i(k_0^2 - s^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2} + \pi \int_{k_0}^\infty ds \frac{s(s^2 - k_0^2)^{\frac{1}{2}} e^{-(s^2 - k_0^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2}
\]

Again, these two integrals can be computed in closed form (appendix F).
\[
\int_0^{k_0} ds \frac{s(k_0^2 - s^2)^{\frac{1}{2}} e^{-i(k_0^2 - s^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2} = \frac{k_0 e^{-ik_0l_z}}{2(\bar{k}^2 - k_0^2)}
\]
\[
+ \frac{(i\bar{k}l_z - 1)}{4\bar{k}} e^{-ik_0l_z} \left[E_1(-i\bar{k}l_z + ik_0l_z) - E_1(-i\bar{k}l_z) \right]
\]
\[
+ \frac{(i\bar{k}l_z + 1)}{4\bar{k}} e^{ik_0l_z} \left[E_1(i\bar{k}l_z + ik_0l_z) - E_1(i\bar{k}l_z) \right]
\]

and
\[
\int_{k_0}^\infty ds \frac{s(s^2 - k_0^2)^{\frac{1}{2}} e^{-(s^2 - k_0^2)\frac{1}{2}k_0}}{(s^2 - k_0^2 + \bar{k}^2)^2} = \frac{\text{Im} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right]}{2\bar{k}} - l_z \text{Re} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right]
\]

Then the result comes in a straightforward way
\[
I_D = -\frac{i\pi}{2\bar{k}} \left[\frac{-\bar{k} e^{-ik_0l_z}}{\bar{k}^2 - k_0^2} + \left[i\pi - \ln(\bar{k}^2 - k_0^2) \right] e^{-ik_0l_z} \left(\frac{i\bar{k}l_z - 1}{2} \right) \right]
\]
\[
+ \frac{i\pi k_0 e^{-ik_0l_z}}{2(\bar{k}^2 - k_0^2)} + \frac{i\pi}{4\bar{k}} \left(i\bar{k}l_z - 1 \right) e^{-ik_0l_z} \left[E_1(-i\bar{k}l_z + ik_0l_z) - E_1(-i\bar{k}l_z) \right]
\]
\[
+ \frac{i\pi}{4\bar{k}} \left(i\bar{k}l_z + 1 \right) e^{ik_0l_z} \left[E_1(i\bar{k}l_z + ik_0l_z) - E_1(i\bar{k}l_z) \right]
\]
\[
- \frac{\pi}{2\bar{k}} \text{Im} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right] - \frac{\pi l_z}{2} \text{Re} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right]
\]

Putting all the pieces together according to equation (E9), we eventually obtain
\[
I_{11} = -\frac{\pi H}{2\bar{k}} + \frac{\pi H e^{-ik_0l_z}}{2\bar{k}} (i\bar{k}l_z - 1) + \frac{\text{Im} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right]}{\bar{k}} + l_z \text{Re} \left[e^{i\bar{k}l_z} E_1(i\bar{k}l_z) \right]
\]
\[
\begin{align*}
+ i \left(\frac{1}{\tilde{k} + k_0} + \frac{\ln(\tilde{k} + k_0)}{\tilde{k}} + \frac{\tilde{k} e^{-i\tilde{k}l_z} - k_0 e^{-ik_0l_z}}{\tilde{k}^2 - k_0^2} \right) \\
+ (i \tilde{k}l_z - 1) \left[i\pi - \ln(\tilde{k}^2 - k_0^2) \right] \frac{e^{-i\tilde{k}l_z}}{2\tilde{k}} \\
+ \frac{(1 - i\tilde{k}l_z)}{2\tilde{k}} e^{-i\tilde{k}l_z} \left[E_1(-i\tilde{k}l_z + ik_0l_z) - E_1(-i\tilde{k}l_z) \right] \\
- \frac{(1 + i\tilde{k}l_z)}{2\tilde{k}} e^{i\tilde{k}l_z} \left[E_1(i\tilde{k}l_z + ik_0l_z) - E_1(i\tilde{k}l_z) \right]
\end{align*}
\]

(E34)

Recall that \(\tilde{k} = \pi/l_z \) and that [72]

\[
E_1(i\pi) = -Ci(\pi) + iSi(\pi) - \frac{i\pi}{2}
\]

(E35)

\[
E_1(-i\pi) = -Ci(\pi) - iSi(\pi) + \frac{i\pi}{2}
\]

We therefore can write the result, exact in the limit \((k_0d) \to 0\),

\[
I_{11} = l_z Ci(\pi) - \frac{Si(\pi)}{\tilde{k}} - \frac{\pi}{\tilde{k}} (\gamma + \ln(d/2)) - \frac{\pi \ln(\tilde{k}^2 - k_0^2)}{2\tilde{k}} \\
+ i \left[\frac{1}{\tilde{k} + k_0} - \frac{\tilde{k} + k_0 e^{-ik_0l_z}}{\tilde{k}^2 - k_0^2} + \frac{1}{2\tilde{k}} \ln\left(\frac{\tilde{k} + k_0}{\tilde{k} - k_0}\right) \right] - \frac{(i + \pi)}{2\tilde{k}} E_1(ik_0l_z - i\pi) \\
+ \frac{(i - \pi)}{2\tilde{k}} E_1(ik_0l_z + i\pi) + \frac{Si(\pi) - \pi/2 - \pi Ci(\pi)}{\tilde{k}}
\]

(E38)
APPENDIX F

In this appendix, we calculate four integrals needed in appendix E.

First Integral

\[
\int_{0}^{k_s} ds \frac{s (k_0^2 - s^2)^\mu}{(s^2 - k_0^2 + \kappa^2)^2} = \int_{0}^{k_s} dt \frac{t^2}{(t^2 - \kappa^2)^2} = \frac{1}{k} \int_{0}^{k_0/\kappa} dz \frac{z^2}{(1 - z^2)^2}
\]

The last integral is known in closed form [74]:

\[
\int dz \frac{z^2}{(1 - z^2)^2} = \frac{x}{2(1 - x^2)} - \frac{1}{4} \ln \left(\frac{1 + x}{1 - x} \right)
\]

Therefore,

\[
\int_{0}^{k_s} ds \frac{s (k_0^2 - s^2)^\mu}{(s^2 - k_0^2 + \kappa^2)^2} = \frac{k_0}{2(\kappa^2 - k_0^2)} - \frac{1}{4k} \ln \left(\frac{\kappa + k_0}{k - k_0} \right) \tag{F1}
\]

Second Integral

\[
\int_{k_s}^{\infty} ds \frac{s (s^2 - k_0^2)^\mu}{(s^2 - k_0^2 + \kappa^2)^2} = \int_{0}^{\infty} dt \frac{t^2}{(t^2 + \kappa^2)^2} = \frac{1}{k} \int_{0}^{\infty} dz \frac{z^2}{(1 + z^2)^2}
\]

Recall another tabulated result [75]:

\[
\int dz \frac{z^2}{(1 + z^2)^2} = -\frac{x}{2(1 + x^2)} + \frac{1}{2} \tan^{-1} x
\]

Thus, we obtain the result:

\[
\int_{k_s}^{\infty} ds \frac{s (s^2 - k_0^2)^\mu}{(s^2 - k_0^2 + \kappa^2)^2} = \frac{\pi}{4k} \tag{F2}
\]

Third Integral

\[
\int_{0}^{k_s} ds \frac{s (k_0^2 - s^2)^\mu e^{-i(k_0^2 - s^2)^\mu l_s}}{(s^2 - k_0^2 + \kappa^2)^2} = \int_{0}^{k_0} dz \frac{z^2 e^{-i\kappa l_s}}{(z^2 - \kappa^2)^3}
\]

Integrate by parts to find
\[= - \frac{k_0 e^{-ik_0 z}}{2 (k_0^2 - \kappa^2)} + \int_0^k dz \frac{e^{-iz \lambda}}{2 (z^2 - \kappa^2)} \]

We need two tabulated integrals [76]:

\[\int dz \frac{e^{iz}}{a^2 + z^2} = \frac{i}{2a} [e^{-a} E_1(-a - iz) - e^a E_1(a - iz)] \]

\[\int dz \frac{z e^{iz}}{a^2 + z^2} = - \frac{1}{2} [e^{-a} E_1(-a - iz) + e^a E_1(a - iz)] \]

where the exponential integral \(E_1 \) is defined by [77]:

\[E_1(z) = \int_0^\infty \frac{e^{-t}}{t} \quad (|\arg z| < \pi) \]

It is now an easy matter to get the result:

\[\int_0^k ds \frac{s (s^2 - k_0^2) e^{-iz \lambda}}{(s^2 - k_0^2 + \kappa^2)^2} = \frac{k_0 e^{-ik_0 z}}{2 (k_0^2 - \kappa^2)} \]

\[+ \frac{(i\kappa l_z - 1)}{4\kappa} e^{-i\kappa l_z} \left[E_1(-i\kappa l_z + ik_0 l_z) - E_1(-i\kappa l_z) \right] \]

\[+ \frac{(i\kappa l_z + 1)}{4\kappa} e^{i\kappa l_z} \left[E_1(i\kappa l_z + ik_0 l_z) - E_1(i\kappa l_z) \right] \]

\[\text{(F3)} \]

Fourth Integral

Integrating by parts, we find

\[\int_0^\infty ds \frac{s (s^2 - k_0^2) e^{-iz \lambda}}{(s^2 - k_0^2 + \kappa^2)^2} = \int_0^\infty dz \frac{z e^{-iz \lambda}}{(z^2 + \kappa^2)^2} = \int_0^\infty dz \frac{e^{-iz \lambda}}{2 (z^2 + \kappa^2)} \]

Recall two known integrals [78]:

\[\int dz \frac{e^z}{(z^2 + a^2)} = - \frac{1}{a} \text{Im} \left[e^{ia} E_1(-z + ia) \right] \quad a > 0 \]

\[\int dz \frac{z e^z}{(z^2 + a^2)} = - \text{Re} \left[e^{ia} E_1(-z + ia) \right] \]

Therefore, we have

\[\int_0^\infty ds \frac{s (s^2 - k_0^2) e^{-iz \lambda}}{(s^2 - k_0^2 + \kappa^2)^2} = - \frac{\text{Im} \left[e^{i\kappa l_z} E_1(i\kappa l_z) \right]}{2\kappa} - \frac{l_z \text{Re} \left[e^{i\kappa l_z} E_1(i\kappa l_z) \right]}{2} \]

\[\text{(F4)} \]
APPENDIX G

In this appendix, we will derive a numerically efficient simplification of a double integral that appears frequently in this work:

\[
I = \int_0^\Delta dz \int_0^\Delta dz' \cos \left(\frac{\pi x}{\Delta} \right) \cos \left(\frac{\pi z'}{\Delta} \right) \frac{e^{-ik_\alpha((x-x')^2 + \delta^2)^{1/4}}}{((x-x')^2 + \delta^2)^{1/4}}
\]

\[
= \frac{1}{2} \int_0^\Delta dz \int_0^\Delta dz' \left[\cos \frac{\pi (x+x')}{\Delta} + \cos \frac{\pi (x-x')}{\Delta} \right] \frac{e^{-ik_\alpha((x-x')^2 + \delta^2)^{1/4}}}{((x-x')^2 + \delta^2)^{1/4}}
\]

(G1)

The double integration and the situations when \(\delta \) is much smaller than \(\Delta \) present unnecessary numerical difficulties that are easy to remove. Let's define two new variables, \(p \) and \(p' \) as follows

\[
p = x - x'
\]

\[
p' = x + x'
\]

Thus,

\[
x = \frac{p + p'}{2}
\]

\[
x' = \frac{p' - p}{2}
\]

The integration domain is shown in Fig. G1. The Jacobian determinant of the transformation is given by [79]:

\[
\frac{\partial(x,x')}{\partial(p,p')} = 1/2
\]

(G4)

Thus we can integrate with respect to the \(p' \) variable,

\[
I = \frac{1}{4} \int_{-\Delta}^{\Delta} dp \int_{-p}^{2\Delta-p} dp' \cos \frac{\pi p'}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}} + \frac{1}{4} \int_{0}^{\Delta} dp \int_{0}^{2\Delta-p} dp' \cos \frac{\pi p'}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}}
\]

\[
+ \frac{1}{4} \int_{-\Delta}^{\Delta} dp \int_{-p}^{2\Delta+p} dp' \cos \frac{\pi p'}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}} + \frac{1}{4} \int_{0}^{\Delta} dp \int_{-p}^{2\Delta-p} dp' \cos \frac{\pi p'}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}}
\]

\[
= \frac{\Delta}{2\pi} \int_{-\Delta}^{\Delta} dp \sin \frac{\pi p}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}} - \frac{\Delta}{2\pi} \int_{0}^{\Delta} dp \sin \frac{\pi p}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}}
\]

\[
+ \int_{0}^{\Delta} dp (\Delta - p) \cos \frac{\pi p}{\Delta} \frac{e^{-ik_\alpha(p^2 + \delta^2)^{1/4}}}{(p^2 + \delta^2)^{1/4}}
\]

(G5)

Or,
Fig. G1. Integration domain.

\[I = \int_0^\Delta dp \left[(\Delta - p) \cos \frac{\pi p}{\Delta} - \frac{\Delta}{\pi} \sin \frac{\pi p}{\Delta} \right] \frac{e^{-\frac{\pi}{\Delta} \left(p^2 + \delta^2 \right)^n}}{(p^2 + \delta^2)^{\frac{n}{2}}} \]

(G6)

When \(\delta \) is much smaller than \(\Delta \), it is useful to subtract the singular behavior at \(p = 0 \) and to compute it separately. Thus,

\[I = \int_0^\Delta dp \frac{\left[(\Delta - p) \cos \frac{\pi p}{\Delta} - \frac{\Delta}{\pi} \sin \frac{\pi p}{\Delta} \right] e^{-\frac{\pi}{\Delta} \left(p^2 + \delta^2 \right)^n} - \Delta \left(p^2 + \delta^2 \right)^{\frac{n}{2} + 1}}{(p^2 + \delta^2)^{\frac{n}{2}}} + \Delta \sinh^{-1}(\Delta/\delta) \]

(G7)

The same technique yields the simpler but equally useful result

\[\int_0^\Delta dx \int_0^\Delta dx' \frac{e^{-\frac{\pi}{\Delta} \left((x-x')^2 + \delta^2 \right)^n}}{\left((x-x')^2 + \delta^2 \right)^{\frac{n}{2}}} = 2 \int_0^\Delta dp \left(\Delta - p \right) \frac{e^{-\frac{\pi}{\Delta} \left(p^2 + \delta^2 \right)^n}}{(p^2 + \delta^2)^{\frac{n}{2}}} \]

(G8)
APPENDIX H

In this appendix, we outline the calculations needed for the rectangular patch.

Method 1 (Method presented in this report)

1. Estimate the resonant frequency
 \[f = \frac{1}{2l_c (\varepsilon_0 \varepsilon_r \mu_0 \mu_r)^{\frac{1}{4}}} \]

2. Calculate the "ideal" cavity wavenumber \(\bar{k}_{10} = \pi / l_z \)

3. Calculate the free-space wavenumber \(k_0 = 2\pi f (\varepsilon_0 \mu_0)^{\frac{1}{4}} \)

4. Calculate \(I_{11}, I_{13}, I_{22}, I_{24}, J_{11} \) and \(J_{13} \) from equations (63) or (64), (65) - (67), (72) and (73)

5. Calculate the complex wavenumber \(k_{10} \) from (75)

6. Calculate the resonant frequency
 \[f = \text{Re} \left[\frac{k_{10}}{2\pi (\varepsilon_0 \varepsilon_r \mu_0 \mu_r)^{\frac{1}{4}}} \right] \]

7. Calculate the Q-factor from (57)

8. Repeat steps 3 to 7 with the better estimate of the resonant frequency given in step 6.

Method 2 (Kuester, Johnk and Chang's analysis [29])

1. Calculate \(\delta_\varepsilon \) and \(\delta_\mu \) from equations (40) and (42).

2. Calculate \(Q_0(-\delta_\varepsilon) \) and \(Q_0(\delta_\mu) \) from equation (39)

3. Calculate the index of refraction \(n = (\varepsilon, \mu_r)^{\frac{1}{4}} \)

4. Calculate the effective refractive index
 \[n_{eff} = n - \frac{d}{l_y \pi n} \left[2n^2 (Q_0(\delta_\varepsilon) - Q_0(\delta_\mu)) + (1 - n^2) \mu_r \ln \left(\frac{\pi d}{nl_x} (n^2 - 1)^{\frac{1}{4}} + \gamma - 1 \right) \right] \]

5. Calculate the edge extension
 \[\Delta h = -\frac{d}{\pi} \left(\frac{\ln (\pi d/nl_x) + \gamma - 1}{\varepsilon_r} + 2Q_0(-\delta_\varepsilon) - \ln (2\pi) \right) \]
6. Calculate the resonant frequency

\[f = \frac{1}{2n_{ef} \left(l_z + 2\Delta h \right) \left(\varepsilon_0 \mu_0\right)^{\frac{1}{4}}} \]

7. Calculate the Q-factor

\[Q = \frac{n^3 l_z^2}{2n_{ef} \ d \left(l_z + 2\Delta h \right)} \]

Method 3 (Carver's modal analysis [27])

1. Estimate an effective dielectric constant

\[\varepsilon_e = \frac{\varepsilon_r + 1}{2} + \frac{\varepsilon_r - 1}{2} \left[1 + \frac{10d}{l_y} \right]^{-\frac{1}{2}} \]

2. Calculate the edge extension parameter

\[\frac{\Delta l}{d} = 0.412 \left[\frac{\varepsilon_e + 0.3}{\varepsilon_e - 0.258} \right] \left[\frac{l_y}{d + 0.262} \right] \]

3. Estimate the free-space wavelength \(\lambda_0 = 2l_z \left(\varepsilon_r\right)^{\frac{1}{2}} \)

4. Calculate the wall susceptance \(B = 0.01668 \left(\Delta l \varepsilon_e l_y\right) / \left(d \lambda_0\right) \)

5. Calculate the wall conductance \(G = 0.00836 l_y / \lambda_0 \)

6. Calculate the aspect factor

\[F = 0.7747 + 0.5977 \left(\frac{l_y}{l_z} - 1\right) - 0.1638 \left(\frac{l_y}{l_z} - 1\right)^2 \]

7. Calculate the impedance parameter

\[\kappa = \frac{240 i \pi^2 d}{\lambda_0 l_y} \left(G + iB\right) F l_z \]

8. Calculate the eigenvalue shift factor with 4 iterations using \(\Delta_0 = 0 \)

\[\Delta_{p+1} = \frac{2\kappa \left(\pi - \Delta_p\right)}{\kappa^2 + 2\Delta_p \pi - \Delta_p^2 - \pi^2} - \frac{\Delta_p^3}{3} \]

9. Calculate the complex wavenumber \(k_{10} = \left(\pi - \Delta\right) / l_z \)

10. Calculate the resonant frequency

\[f = \frac{\text{Re}[k_{10}]}{2\pi \left(\varepsilon_0 \varepsilon_r \mu_0\right)^{\frac{1}{2}}} \]

11. Calculate the Q-factor from equation (57).
APPENDIX I

In this appendix, we calculate three coupling integrals needed for the dominant mode solution of the circular patch.

Integral I_C

$$
I_C = \oint_P \oint_P d\theta' \oint_P \oint_P d\theta \cos(\theta - \theta') \cos\phi \cos\phi' \frac{e^{-ik_0 \left(\frac{4R^2 \sin^2(\phi - \phi')}{2} + d^2\right)} \kappa}{(4R^2 \sin^2(\phi - \phi')/2 + d^2)^\kappa}
$$

(11)

Let's make the change of variable $\alpha = \phi' - \phi$, thus,

$$
I_C = \left[dR \ J_1(j_1 \ i_1) \right]^2 \int_0^{2\pi} d\phi \ \int_0^{2\pi} d\phi' \ \int_0^{2\pi} d\alpha \ \cos\phi \cos\phi' \frac{e^{-ik_0 \left(\frac{4R^2 \sin^2(\alpha/2)}{2} + d^2\right)} \kappa}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa}
$$

The integration on the α variable is over a full period. We can thus shift the limits over any period and, in particular, from 0 to 2π. Expanding $\cos(\phi + \alpha)$,

$$
I_C = \left[dR \ J_1(j_1 \ i_1) \right]^2 \int_0^{2\pi} d\phi \ \int_0^{2\pi} d\alpha \ \cos\phi \ \cos\alpha \ \cos(\phi + \alpha) \ \frac{e^{-ik_0 \left(\frac{4R^2 \sin^2(\alpha/2)}{2} + d^2\right)} \kappa}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa}
$$

(12)

The above result simplifies immediately to

$$
I_C = 2\pi \left[dR \ J_1(j_1 \ i_1) \right]^2 \int_0^{2\pi} d\alpha \ \cos^2\alpha \ \frac{e^{-ik_0 \left(\frac{4R^2 \sin^2(\alpha/2)}{2} + d^2\right)} \kappa}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa}
$$

(13)

Since, by hypothesis, $(k_0d) \ll 1$, we need to isolate the singularity of the integrand for small values of α. Therefore, we write

$$
I_C = 2\pi \left[dR \ J_1(j_1 \ i_1) \right]^2 \left[\int_0^\pi \frac{d\alpha}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa} - \int_0^\pi \frac{\cos^2\alpha \ e^{-ik_0 \left(\frac{4R^2 \sin^2(\alpha/2)}{2} + d^2\right)} \kappa}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa} - 1 \right]
$$

(14)

The second integral, because of the smooth integrand, is easily integrated numerically. The first integral, as shown below, can be computed in closed form. First, perform the change of variable $\theta = \alpha/2$. We obtain

$$
\int_0^\pi \frac{d\alpha}{(4R^2 \sin^2(\alpha/2) + d^2)^\kappa} = \int_0^{\pi/2} \frac{2d\theta}{(4R^2 \sin^2\theta + d^2)^\kappa} = \int_0^{\pi/2} \frac{2d\theta}{(4R^2 \cos^2\theta + d^2)^\kappa}
$$
\begin{equation}
\frac{2}{(4R^2 + d^2)^\frac{n}{2}} \left(\frac{d\theta}{1 - \frac{4R^2 \sin^2 \theta}{4R^2 + d^2}} \right)^{\frac{n}{2}} = \frac{2}{(4R^2 + d^2)^\frac{n}{2}} K \left(\frac{4R^2}{4R^2 + d^2} \right) \tag{15}
\end{equation}

where K is the complete elliptic integral of the first kind $[57]$. Finally,

\begin{equation}
I_C = 2\pi \left[dR J_i (j_{1,1}) \right]^2 \left[\frac{2K \left(\frac{4R^2}{4R^2 + d^2} \right)}{(4R^2 + d^2)^\frac{n}{2}} + \int_0^\pi d\alpha \cos^2 \alpha \frac{e^{-ik_2 \left(\frac{4R^2 \sin^2 (\alpha/2) + d^2}{4R^2 \sin^2 (\alpha/2) + d^2} \right)^\frac{n}{2}} - 1}{4R^2 \sin^2 (\alpha/2) + d^2 \frac{n}{2}} \right] \tag{16}
\end{equation}

Integral J_C

\begin{align}
J_C &= \oint_{\partial P} \oint_{\partial P'} \frac{\partial \tilde{V}}{\partial \tau} \frac{\partial \tilde{V}}{\partial \tau'} G_d (l,l') \\
&= d^2 J_i^2 (j_{1,1}) \left[\int_0^{2\pi} d\phi \sin \phi \int_0^{2\pi} d\phi' \sin \phi' \frac{e^{-ik_2 \left(\frac{4R^2 \sin^2 (\phi-\phi')/2 + d^2}{4R^2 \sin^2 (\phi-\phi')/2 + d^2} \right)^\frac{n}{2}}}{4R^2 \sin^2 (\phi-\phi')/2 + d^2 \frac{n}{2}} \right] \tag{17}
\end{align}

Let's make the change of variable $\alpha = \phi' - \phi$. Thus,

\begin{align}
J_C &= d^2 J_i^2 (j_{1,1}) \left[\int_0^{2\pi} d\phi \sin \phi \int_0^{2\pi} d\phi \cos \alpha \frac{e^{-ik_2 \left(\frac{4R^2 \sin^2 (\alpha/2) + d^2}{4R^2 \sin^2 (\alpha/2) + d^2} \right)^\frac{n}{2}}}{4R^2 \sin^2 (\alpha/2) + d^2 \frac{n}{2}} \right] \tag{18}
\end{align}

\begin{align}
J_C &= d^2 J_i^2 (j_{1,1}) \left[\int_0^{2\pi} d\phi \sin^2 \phi \int_0^{2\pi} d\phi \cos \alpha \frac{e^{-ik_2 \left(\frac{4R^2 \sin^2 (\alpha/2) + d^2}{4R^2 \sin^2 (\alpha/2) + d^2} \right)^\frac{n}{2}}}{4R^2 \sin^2 (\alpha/2) + d^2 \frac{n}{2}} \right] \tag{19}
\end{align}

We can take care of the singularity of the integrand in the same way as for the integral I_C above. Finally, we have

\begin{equation}
J_C = 2\pi d^2 J_i^2 (j_{1,1}) \left[\frac{2K \left(\frac{4R^2}{4R^2 + d^2} \right)}{(4R^2 + d^2)^\frac{n}{2}} + \int_0^\pi d\alpha \cos \alpha \frac{e^{-ik_2 \left(\frac{4R^2 \sin^2 (\alpha/2) + d^2}{4R^2 \sin^2 (\alpha/2) + d^2} \right)^\frac{n}{2}} - 1}{4R^2 \sin^2 (\alpha/2) + d^2 \frac{n}{2}} \right] \tag{10}
\end{equation}

Integral I_S

\begin{equation}
I_S = \int_{S_C} ds \tilde{V}^2 = d^2 \int_0^{2\pi} d\phi \cos^2 \phi \int_0^R d\rho J_i^2 (j_{1,1}^R) \tag{11}
\end{equation}

Recall the integral $[80]$: \begin{equation}
\int dz z J_i^2 (az) = \frac{z^2}{2} \left[(1 - \frac{1}{a^2 z^2}) J_i^2 (az) + J_i^2 (az) \right] \tag{12}
\end{equation}
It follows immediately that

\[
\int_0^R d\rho \; \rho J_1^2 \left(\frac{j_{1,1} \rho}{R} \right) = \frac{R^2}{2} \left(1 - \frac{1}{j_{1,1}^2} \right) J_1^2 (j_{1,1})
\]

And therefore,

\[
I_S = \frac{\pi d^2 R^2}{2} \left(1 - \frac{1}{j_{1,1}^2} \right) J_1^2 (j_{1,1})
\]
APPENDIX J

In this appendix, we outline the calculations needed for the circular patch. Note that the step 5 in Carver's method has been corrected from the expressions found in [27] and [55].

Method 1 (Method presented in this report)

1. Estimate the resonant frequency

\[f = \frac{j_{1,1}}{2\pi R (\varepsilon_0 \varepsilon_r, \mu_0 \mu_r)^{\frac{1}{2}}} \]

2. Calculate the "ideal" cavity wavenumber \(\tilde{k}_{11} = \frac{j_{1,1}}{R} \)

3. Calculate the free-space wavenumber \(k_0 = 2\pi f (\varepsilon_0 \mu_0)^{\frac{1}{2}} \)

4. Calculate \(I_C, J_C \) and \(I_x \) from equations (87), (88) and (89)

5. Calculate the line integrals (90) and (91)

6. Calculate the complex wavenumber \(k_{11} \) from (81)

7. Calculate the resonant frequency

\[f = \text{Re} \left[\frac{k_{11}}{2\pi (\varepsilon_0 \varepsilon_r, \mu_0 \mu_r)^{\frac{1}{2}}} \right] \]

8. Calculate the Q-factor from equation (57)

9. Repeat steps 3 to 8 with the better estimate of the resonant frequency given in step 7.

Method 2 (Carver's modal analysis [27])

1. Estimate the free-space wavelength \(\lambda_0 = 2\pi R (\varepsilon_r)^{\frac{1}{2}} / j_{1,1} \)

2. Calculate the wall susceptance \(B = 0.00834 \pi R \varepsilon_r / \lambda_0 \)

3. Calculate the wall conductance \(G = 0.01254 \pi R / \lambda_0 \)

4. Calculate the edge impedance parameter

\[\alpha = \frac{120 i \pi d}{R \lambda_0} (G + iB) \]

5. Calculate the eigenvalue shift factor with five iterations using \(\Delta_0 = 0 \)
\[\Delta_{p+1} = \frac{\left[1.8410969 + 4.0260952 \Delta_p^2 \right] (1 - \alpha R) - 1.84118}{3.3263839 (1 - \alpha R) - 1} \]

6. Calculate the complex wavenumber \(k_{11} = (1.84118 - \Delta_5) / R \)

7. Calculate the resonant frequency

\[f = \frac{\text{Re}[k_{11}]}{2\pi(\epsilon_0 \epsilon_r \mu_0)^{\frac{1}{2}}} \]

8. Calculate the Q-factor from (57).