Lab 5: Power Spectral Density, Noise, and Symbol Timing Information

1 Introduction

The two concepts that are most fundamental to the realistic modeling of communication systems are the randomness of the source signal or message to be transmitted and the constraints imposed by the communication channel. A channel constraint that may be either random or deterministic or part of both is the impulse response and the bandwidth of the channel. Average or peak power limitation is regarded as another channel constraint, even though it may actually be imposed by transmitter design considerations and/or FCC (Federal Communications Commission) rules. A third component, that almost always needs to be modeled as a random process, is noise that is present in all communication systems. Although some of the noise in a received signal may in reality come from the front end of the receiver, noise is generally attributed to the channel. Together with the power limitation of the transmitted signal, it forms a constraint in terms of the signal-to-noise ratio (SNR) that the receiver has to work with.

1.1 Energy and Power

The energy of a (possibly complex-valued) CT signal $x(t)$ in the time interval $t_1 \leq t < t_2$ is given by

$$E_x(t_1, t_2) = \int_{t_1}^{t_2} x(t) x^*(t) \, dt = \int_{t_1}^{t_2} |x(t)|^2 \, dt,$$

where $x^*(t)$ is the complex conjugate of $x(t)$. The quantity $|x(t)|^2$ is called the instantaneous power of $x(t)$ at time t. The average power of $x(t)$ in $t_1 \leq t < t_2$ is given by

$$P_x(t_1, t_2) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 \, dt.$$

For theoretical computations, the total energy and average power of $x(t)$ for all times $-\infty < t < \infty$ are important quantities and defined as (if they exist)

$$E_x = \int_{-\infty}^{\infty} |x(t)|^2 \, dt,$$

and

$$P_x = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 \, dt.$$

Note that if $x(t)$ is periodic with period T_1, then the computation of the average power simplifies to

$$P_x = \frac{1}{T_1} \int_{T_1} |x(t)|^2 \, dt,$$
where the integration is taken over one full period of \(x(t)\), starting at any convenient point in time.

For a DT sequence \(x_n\), energy and power in the time (or index) interval \(n_1 \leq n < n_2\) are defined as

\[
E_x[n_1, n_2] = \sum_{n=n_1}^{n_2-1} |x_n|^2, \quad \text{and} \quad P_x[n_1, n_2] = \frac{1}{n_2 - n_1} \sum_{n=n_1}^{n_2-1} |x_n|^2,
\]

and, for \(-\infty < n < \infty\), as (if they exist)

\[
E_x = \sum_{n=-\infty}^{\infty} |x_n|^2, \quad \text{and} \quad P_x = \lim_{N \to \infty} \frac{1}{2N + 1} \sum_{n=-N}^{N} |x_n|^2.
\]

The quantity \(|x_n|^2\) is the instantaneous power of \(x_n\) at index \(n\).

If the DT sequence \(x_n\) is regarded as an approximation for the CT waveform \(x(t)\), sampled with rate \(F_s\), then

\[
E_x(t_1, t_2) = \int_{t_1}^{t_2} |x(t)|^2 dt \approx \frac{1}{F_s} \sum_{n=n_1}^{n_2-1} |x_n|^2 = \frac{E_x[n_1, n_2]}{F_s}, \quad \text{and} \quad P_x(t_1, t_2) = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt \approx \frac{1}{(t_2 - t_1) F_s} \sum_{n=n_1}^{n_2-1} |x_n|^2 \approx P_x[n_1, n_2],
\]

if \(n_1 \approx t_1 F_s\) and \(n_2 \approx t_2 F_s\), and \(F_s\) is chosen large enough for the given \(x(t)\).

1.2 Parseval’s Identity

For deterministic signals energy or power in the time domain is related to energy or power in the frequency domain through **Parseval’s identity** in its various forms:

FS: \[
\frac{1}{T_1} \int_{T_1}^{T_1} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |X_k|^2, \quad X_k = \frac{1}{T_1} \int_{T_1}^{T_1} x(t) e^{-j2\pi kt/T_1} dt
\]

FT: \[
\int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 df, \quad X(f) = \int_{-\infty}^{\infty} x(t) e^{-j2\pi ft} dt
\]

DTFT: \[
\sum_{n=-\infty}^{\infty} |x_n|^2 = \int_{1}^{1} |X(\phi)|^2 d\phi, \quad X(\phi) = \sum_{n=-\infty}^{\infty} x_n e^{-j2\pi n \phi}
\]

DFT: \[
\sum_{n=0}^{N-1} |x_n|^2 = \frac{1}{N} \sum_{k=0}^{N-1} |X_k|^2, \quad X_k = \sum_{n=0}^{N-1} x_n e^{-j2\pi kn/N}
\]
1.3 ESD for Deterministic Signals

For energy signals (i.e., signals with finite energy), the distribution of energy in the frequency domain is of interest. The following definitions apply to deterministic signals.

Definition: The (normalized) energy spectral density (ESD) of a CT signal $x(t)$ is defined as (if it exists)

$$|X(f)|^2.$$

The units of $|X(f)|^2$ are volts2-sec/Hz if $x(t)$ is a voltage signal.

Definition: The correlation function between two CT signals $v(t)$ and $w(t)$ is defined as (if it exists)

$$\psi_{vw}(\tau) = \int_{-\infty}^{\infty} v(t + \tau) w^*(t) \, dt.$$

If $w(t) = v(t)$, then $\psi_{vv}(\tau)$ is called autocorrelation function, otherwise it is called cross-correlation function.

Theorem: Energy spectral density and autocorrelation for CT signals are related through the FT (if it exists)

$$|X(f)|^2 = \Psi_{xx}(f) = \int_{-\infty}^{\infty} \psi_{xx}(\tau) e^{-j2\pi f \tau} \, d\tau.$$

Definition: The energy spectral density (ESD) of a DT signal x_n is defined as (if it exists)

$$|X(\phi)|^2.$$

Note that this is periodic in the normalized frequency ϕ with period 1.

Definition: The correlation function between two DT signals v_n and w_n is defined as (if it exists)

$$\psi_{vw}[m] = \sum_{n=-\infty}^{\infty} v_{n+m} w_n^*.$$

If $w_n = v_n$, then $\psi_{vv}[m]$ is called autocorrelation function, otherwise it is called cross-correlation function.

Theorem: Energy spectral density and autocorrelation for DT signals are related through the DTFT (if it exists)

$$|X(\phi)|^2 = \Psi_{xx}(\phi) = \sum_{m=-\infty}^{\infty} \psi_{xx}[m] e^{-j2\pi \phi m}.$$

3
1.4 PSD for Deterministic Signals

For power signals (i.e., signals with finite power), the distribution of power in the frequency domain is of interest. The following definitions are for deterministic signals.

Definition: The (normalized) power spectral density (PSD) of a CT signal \(x(t) \) is defined as (if it exists)

\[
S_x(f) = \lim_{T \to \infty} \frac{1}{2T} |X_T(f)|^2 , \quad \text{where} \quad X_T(f) = \int_{-T}^{T} x(t) e^{-j2\pi ft} dt .
\]

For a voltage signal \(x(t) \) the units of \(S_x(f) \) are volts\(^2\)/Hz. If \(x(t) \) is only available in the interval \(t_1 \leq t < t_2 \), then the PSD is defined as

\[
S_{x(t_1,t_2)}(f) = \frac{1}{t_2 - t_1} |X_{(t_1,t_2)}(f)|^2 , \quad \text{where} \quad X_{(t_1,t_2)}(f) = \int_{t_1}^{t_2} x(t) e^{-j2\pi ft} dt .
\]

To keep the notation simple, \(S_x(f) \) will be used instead of \(S_{x(t_1,t_2)}(f) \) if it is clear from the context that \(x(t) \) is only available for \(t_1 \leq t < t_2 \).

Definition: If \(x(t) \) is a periodic CT signal with period \(T_1 \), then its FT consists of impulses and its PSD is defined as

\[
S_x(f) = \sum_{k=-\infty}^{\infty} |X_k|^2 \delta(f - \frac{k}{T_1}) , \quad \text{where} \quad X_k = \frac{1}{T_1} \int_{T_1} x(t) e^{-j2\pi ft/T_1} dt .
\]

To check that this is indeed the right definition, integrate \(S_x(f) \) over all \(f \) to obtain

\[
\int_{-\infty}^{\infty} S_x(f) \, df = \int_{-\infty}^{\infty} \sum_{k=-\infty}^{\infty} |X_k|^2 \delta(f - \frac{k}{T_1}) \, df = \sum_{k=-\infty}^{\infty} |X_k|^2 \int_{-\infty}^{\infty} \delta(f - \frac{k}{T_1}) \, df = 1
\]

\[
= \sum_{k=-\infty}^{\infty} |X_k|^2 = \frac{1}{T_1} \int_{T_1} |x(t)|^2 \, dt = P_x ,
\]

where the last equality follows from Parseval’s identity for the FS.

Definition: The power spectral density (PSD) of a DT signal \(x_n \) is defined as (if it exists)

\[
S_x(\phi) = \lim_{N \to \infty} \frac{|X_N(\phi)|^2}{2N + 1} , \quad \text{where} \quad X_N(\phi) = \sum_{n=-N}^{N} x_n e^{-j2\pi \phi n} .
\]

Note that \(S_x(\phi) \) is periodic in the normalized frequency \(\phi \) with period 1. If \(x_n \) is only available in the interval \(n_1 \leq n < n_2 \), then the PSD is defined as

\[
S_{x[n_1,n_2]}(\phi) = \frac{1}{n_2 - n_1} |X_{[n_1,n_2]}(\phi)|^2 , \quad \text{where} \quad X_{[n_1,n_2]}(\phi) = \sum_{n=n_1}^{n_2-1} x_n e^{-j2\pi \phi n} .
\]
To keep the notation simple, $S_x(\phi)$ will be used instead of $S_{x[n_1,n_2]}(\phi)$ if it is clear from the context that x_n is only available for $n_1 \leq n < n_2$.

Approximation for $S_x(f)$ Using DFT/FFT. Let $x_n = x(nT_s)$, $0 \leq n < N$ be the DT sequence that is obtained from sampling the CT waveform $x(t)$ at times $t = nT_s = n/F_s$. Assume that the sampling rate F_s was chosen large enough and the frequency resolution F_s/N was chosen small enough so that aliasing effects due to sampling are negligible. Then

$$X\left(\frac{kF_s}{N}\right) \approx \frac{X_k}{F_s},$$

where $X(kF_s/N)$ is the (approximate) FT of $x(t)$ and X_k are the DFT coefficients of x_n, $0 \leq n < N$. Thus, the DFT (or FFT) can be used to approximate the PSD $S_x(f)$ of $x(t)$ at $f = kF_s/N$ as

$$S_x\left(\frac{kF_s}{N}\right) = \frac{|X(kF_s/N)|^2}{N/F_s} \approx \frac{|X_k/F_s|^2}{N/F_s} = \frac{|X_k|^2}{NF_s}.$$

Quite often x_n, $0 \leq n < N$, is split up into $m = \lfloor N/N' \rfloor > 1$ blocks of length $N' < N$. The PSDs of these blocks are then computed individually and the average over the m PSDs is displayed as the final result. Assuming that x_n and $x_{n-iN'}$, $i = 1, 2, \ldots$, have similar statistical properties and are approximately independent of each other, this yields results similar to the ones obtained from averaging over several independent but statistically identical systems.

1.5 Signals and Power in the GRC

In the GNU Radio Companion (GRC) we can generate test signals, display them in the time and frequency domains, and measure their power after filtering out some spectral components using the flowgraph shown below.
The ‘Signal Source’ is used to generate either a ‘Cosine’, ‘Square’, or ‘Triangle’ waveform which is passed through the ‘Throttle’ block to establish a fixed ‘Sample Rate’. A ‘Low Pass Filter’ with variable cutoff frequency f_L is then used to pass only a portion of the spectral content of the waveform so that frequency selective power measurements can be made. The filtered waveform is then displayed in the time and frequency domains, and a histogram of the signal amplitudes is shown in the ‘QT GUI Histogram Sink’. At the bottom of the flow graph the filtered waveform is squared and passed through another ‘Low Pass Filter’ whose output is the average signal power which is displayed in the ‘QT GUI Number Sink’. The specifications of the ‘Low Pass Filters’ are shown next.
As an example, let's generate a dc-free rectangular waveform with amplitude 1, frequency 200 Hz, and set the lowpass filter to pass all frequencies below 10 kHz. This yields the following display.

Apart from Gibb’s phenomenon (the oscillations that result at the discontinuities of a waveform if only a finite number of harmonics are present) the rectangular waveform looks as expected in the different GUI Sinks. It is not difficult to see that if the waveform gets squared and averaged that the average power should be equal to 1 which is very close to what the ‘QT GUI Number Sink’ is reporting. The Fourier series (FS) coefficients X_k of the rectangular waveform $x(t)$ are

$$X_k = \frac{\sin(\pi k/2)}{\pi k/2} = \begin{cases} \frac{(-1)^{(k-1)/2}}{\pi k/2}, & k \text{ odd} \\ 0, & k \text{ even} \end{cases}.$$

Thus, if we set $f_L = 400$ Hz, only the FS coefficients $X_{\pm 1}$ are passed and we expect the power to be $2 \left(\frac{2}{\pi}\right)^2 = 0.81$. This is confirmed in the next display which just shows the spectral lines at the fundamental frequency of ±200 Hz.
Note that the ‘QT GUI Frequency Sink’ does NOT show absolute power (which would be -3.92 dB for each spectral line), it only shows a relative dB value (of -12.95 dB for each spectral line). To check that the relative display works correctly, we run the flowgraph again, this time with $f_L = 800$ Hz so that we get to see the power in the fundamental frequency of 200 Hz and the power in the third harmonic of 600 Hz.
The total power is now \(2\left(\frac{2}{\pi}^2 + \frac{2}{(3\pi)^2}\right) = 0.90\) and the ratio \((X_3/X_1)^2 = 1/9\), corresponding to -9.54 dB. This compares well with \(-22.92 - (-12.95) = -9.97\) which is the value obtained from the relative display of the ‘QT GUI Frequency Sink’.

1.6 Introduction to Random Processes

Power spectral density (PSD) for deterministic signals is of interest mainly for the analysis and the display of an observed signal with finite duration. For almost all theoretical considerations and analytical computations, communications signals have to be modeled as random processes. The main reason for this is that, by definition, deterministic signals can be predicted and thus there is no need for communication.

A CT random process signal is usually a **power signal**, i.e., it has finite power, but infinite energy. But since it is not periodic, its FT is not of the form of a train of impulses multiplied by FS coefficients. In fact, the FT of a random power signal may not even exist, and thus another approach has to be taken to determine the PSD of random processes.

Let \(x(t)\) be a **CT random process** and define the random variables \(x_i = x(t_i)\) for \(i = 1, 2, \ldots, k\). Then the joint **cdf** (cumulative distribution function) \(F_x(\alpha)\) and joint **pdf**
(probability density function) \(f_x(\alpha) \) of \(x = (x_1, x_2, \ldots, x_k) \) are defined as (if they exist)

\[
F_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k) = \Pr\{x_1 \leq \alpha_1, x_2 \leq \alpha_2, \ldots, x_k \leq \alpha_k\},
\]

\[
f_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k) = \frac{\partial^k F_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k)}{\partial \alpha_1 \partial \alpha_2 \cdots \partial \alpha_k}.
\]

A random process is considered to be completely specified if \(F_{x_1, x_2, \ldots, x_k}(\alpha_1, \ldots, \alpha_k) \) can (in principle at least) be constructed for any finite set of time instants \(t_1, \ldots, t_k \).

Random processes are often characterized in terms of averages of one or more random variables. Of particular interest are the first and second moments of a single random variable, which are defined as follows.

Definition: The **first and second moments** (or the mean and the average power) of a CT random process \(x(t) \) at (fixed) time \(t_1 \) are the quantities

\[
m_x(t_1) = E[x(t_1)] = \int_{-\infty}^{\infty} \alpha f_x(t_1)(\alpha) \, d\alpha,
\]

\[
P_x(t_1) = E[|x(t_1)|^2] = \int_{-\infty}^{\infty} |\alpha|^2 f_x(t_1)(\alpha) \, d\alpha.
\]

A related quantity is the **variance** or the second central moment of \(x(t) \) at time \(t_1 \), defined as

\[
\sigma^2_x(t_1) = E[|x(t_1) - m_x(t_1)|^2].
\]

Among the averages over pairs of random variables the correlation functions are important, with particular emphasis on the autocorrelation function as defined next.

Definition: The **(auto)correlation function** of a possibly complex-valued CT random process \(x(t) \) at (fixed) times \(t_1, t_2 \) is defined as

\[
R_x(t_1, t_2) = E[x(t_1)x^*(t_2)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \alpha_1 \alpha_2^* f_{x(t_1), x(t_2)}(\alpha_1, \alpha_2) \, d\alpha_1 d\alpha_2.
\]

The second moment or power at time \(t_1 \) is related to the autocorrelation function by

\[
P_x(t_1) = R_x(t_1, t_1) = E[|x(t_1)|^2].
\]

In general the statistical properties of a random process depend on the absolute values of the time instants \(t_1, t_2, \ldots, t_k \). A process for which

\[
F_{x(t_1), x(t_2), \ldots, x(t_k)}(\alpha_1, \alpha_2, \ldots, \alpha_k) = F_{x(t_1+T), x(t_2+T), \ldots, x(t_k+T)}(\alpha_1, \alpha_2, \ldots, \alpha_k), \quad \text{all } T,
\]

...
is called strict-sense stationary. To obtain results that are practical on one hand and mathematically tractable on the other hand, the following much less restrictive form of stationarity is commonly used in communications.

Definition: A CT random process \(x(t) \) for which

\[
m_x(t_1) = m_x(t_1 + T), \quad \text{and} \quad R_x(t_1, t_2) = R_x(t_1 + T, t_2 + T),
\]

for all \(T \) is said to be a wide-sense stationary (WSS) process. In this case

\[
m_x(t_1) = m_x, \quad \text{and} \quad R_x(t_1, t_2) = R_x(t_1 - t_2, 0) = R_x(t_1 - t_2).
\]

The definitions for DT random processes are very similar. The main difference is that random variables can only be defined for discrete time instants, and not everywhere along the time axis as for CT processes. Let \(x[n] \) be a DT random process and define the random variables \(x_i = x[n_i] \) for \(i = 1, 2, \ldots, k \). Then the joint cdf and pdf of \(x = (x_1, x_2, \ldots, x_k) \) are defined as (if they exist)

\[
F_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k) = \Pr\{x_1 \leq \alpha_1, x_2 \leq \alpha_2, \ldots, x_k \leq \alpha_k\},
\]

\[
f_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k) = \frac{\partial^k F_{x_1, x_2, \ldots, x_k}(\alpha_1, \alpha_2, \ldots, \alpha_k)}{\partial \alpha_1 \partial \alpha_2 \cdots \partial \alpha_k}.
\]

The first and second moments and the autocorrelation function are given in the next two definitions.

Definition: The **first** and **second moments** (or the mean and the average power) of a DT random process \(x[n] \) at (fixed) time index \(n_1 \) are the quantities

\[
m_x[n_1] = E[x[n_1]] = \int_{-\infty}^{\infty} \alpha f_{x[n_1]}(\alpha) \, d\alpha,
\]

\[
P_x[n_1] = E[|x[n_1]|^2] = \int_{-\infty}^{\infty} |\alpha|^2 f_{x[n_1]}(\alpha) \, d\alpha.
\]

Definition: The **(auto)correlation function** of a possibly complex-valued DT random process \(x[n] \) at (fixed) time indexes \(n_1, n_2 \) is defined as

\[
R_x[n_1, n_2] = E[x[n_1] x^*[n_2]] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \alpha_1 \alpha_2^* f_{x[n_1], x[n_2]}(\alpha_1, \alpha_2) \, d\alpha_1 d\alpha_2.
\]

Related quantities are

- Variance at time index \(n_1 \):
 \(\sigma^2_x[n_1] = E[|x[n_1] - m_x[n_1]|^2] \)

- Power at time index \(n_1 \):
 \(R_x[n_1, n_1] = P_x[n_1] = E[|x[n_1]|^2] \).
The definition of a WSS DT process is

Definition: A DT random process \(x[n] \) for which
\[
m_x[n_1] = m_x[n_1 + N], \quad \text{and} \quad R_x[n_1, n_2] = R_x[n_1 + N, n_2 + N],
\]
for all \(N \) is said to be a **wide-sense stationary (WSS)** process. In this case
\[
m_x[n_1] = m_x, \quad \text{and} \quad R_x[n_1, n_2] = R_x[n_1 - n_2, 0] = R_x[n_1 - n_2].
\]

1.7 PSD for Random Processes

The reason why WSS processes play an eminent role in communications and signal processing is because the autocorrelation function of such processes is related to the PSD of the process through the following

Theorem: Wiener-Khintchine. The autocorrelation function \(R_x \) and the PSD \(S_x \) for CT and DT random processes \(x(t) \) and \(x[n] \), respectively, are related by the following Fourier transform pairs

- **CT:**
 \[
 R_x(\tau) = E[x(t) x^*(t - \tau)] \iff S_x(f) = \int_{-\infty}^{\infty} R_x(\tau) e^{-j2\pi f \tau} d\tau,
 \]

- **DT:**
 \[
 R_x[m] = E[x_n x^*_n-m] \iff S_x(\phi) = \sum_{m=-\infty}^{\infty} R_x[m] e^{-j2\pi \phi m}.
 \]

The next statement defines a subset of WSS processes with a special property in the frequency domain.

Definition: A WSS process is said to be **white** if its mean is zero and its PSD is constant for all frequencies, i.e., if \(m_x = 0 \) and (for CT and DT processes, respectively)
\[
S_x(f) = \frac{N_0}{2} \iff R_x(\tau) = \frac{N_0}{2} \delta(\tau), \quad \text{or} \quad S_x(\phi) = \frac{N_0}{2T_s} \iff R_x[m] = \frac{N_0}{2T_s} \delta_m.
\]

Note that a white CT process \(x(t) \) is a theoretical concept that cannot exist in practice since it would require infinite power. However, at the output of a filter with finite passband, e.g., an ideal LPF with cutoff frequency \(f_L \), the power contribution from a white process becomes finite, e.g., \(2f_L N_0/2 = f_L N_0 \), and thus practical.

If \(x(t) \) or \(x[n] \) is a Gaussian process (i.e., the joint pdf of any \(k \) observation instants is jointly Gaussian), with zero mean and a constant non-zero PSD for all frequencies, then \(x(t) \) or \(x[n] \) is called **white Gaussian noise**. A common noise model used for communication systems is **additive white Gaussian noise (AWGN)**. For practical modeling the implicit assumption is that a communication receiver always has a filter at the front end, and the noise only has to be white in the passband of this filter. This ensures that the effect of white noise can be modeled without the need for infinite power.
1.8 PSD of Filtered WSS Process

Let $x(t)$ be a WSS CT random process which is passed through a linear and time-invariant (LTI) system with response $h(t) \Leftrightarrow H(f)$ as shown below.

\[y(t) = h(t) * x(t) = \int_{-\infty}^{\infty} h(\mu) x(t - \mu) d\mu , \]

The output is a new random process with

\[
R_y(t_1, t_2) = E[y(t_1) y^*(t_2)] = E\left[\int_{-\infty}^{\infty} h(\mu) x(t_1 - \mu) d\mu \int_{-\infty}^{\infty} h^*(\nu) x^*(t_2 - \nu) d\nu \right] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\mu) h^*(\nu) E[x(t_1 - \mu) x^*(t_2 - \nu)] d\mu d\nu = R_x(t_1 - t_2 + \nu - \mu).
\]

Thus, setting $t_1 - t_2 \to \tau$ and $\nu - \mu \to \lambda$ yields

\[
R_y(\tau) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(\mu) h^*(\lambda + \mu) R_x(\tau + \lambda) d\mu d\lambda = \int H^*(f) e^{-j2\pi f(\lambda+\mu)} df
\]

\[
= \int_{-\infty}^{\infty} H^*(f) \int_{-\infty}^{\infty} h(\mu) e^{-j2\pi f \mu} d\mu \int_{-\infty}^{\infty} R_x(\tau + \lambda) e^{-j2\pi f \lambda} d\lambda df
\]

\[
= \int_{-\infty}^{\infty} |H(f)|^2 S_x(f) e^{j2\pi f \tau} df .
\]

Noting that the last expression is just an inverse Fourier transform, the PSDs of $x(t)$ and $y(t)$ are thus related by

\[
S_y(f) = |H(f)|^2 S_x(f) .
\]

In the special case when $x(t)$ is a white process (e.g., white Gaussian noise) with $S_x(f) = N_0/2$, the PSD of $y(t)$ is

\[
S_y(f) = \frac{N_0}{2} |H(f)|^2 .
\]
1.9 PSD of WSS Process Multiplied by Sinusoid

Let \(s(t) \) be a WSS random process (e.g., a baseband message signal) with PSD \(S_s(f) \) and consider the random process \(x(t) \) obtained by

\[
x(t) = s(t) \cos(2\pi f_c t + \theta_c), \quad \theta_c \in [0, 2\pi),
\]

i.e., \(s(t) \) is multiplied by a sinusoidal carrier with deterministic frequency \(f_c \) and random phase \(\theta_c \). Assuming that \(s(t) \) and \(\theta_c \) are statistically independent, the autocorrelation function of \(x(t) \) can be computed as

\[
R_x(t_1, t_2) = E[x(t_1)x^*(t_2)] = E[s(t_1) \cos(2\pi f_c t_1 + \theta_c) s^*(t_2) \cos(2\pi f_c t_2 + \theta_c)]
\]

\[
= \underbrace{E[s(t_1)s^*(t_2)]}_{R_s(t_1-t_2)} \underbrace{E[\cos(2\pi f_c t_1 + \theta_c) \cos(2\pi f_c t_2 + \theta_c)]}_{= \frac{[\cos(2\pi f_c (t_1-t_2)) + \cos(2\pi f_c (t_1+t_2)+2\theta_c)]}{2}}
\]

\[
= \frac{1}{2} R_s(t_1 - t_2) \left[\cos(2\pi f_c (t_1 - t_2)) + \underbrace{E[\cos(2\pi f_c (t_1 + t_2) + 2\theta_c)]}_{= 0 \text{ if } \theta_c \text{ uniform}} \right].
\]

Thus, assuming that the random phase \(\theta_c \) is uniformly distributed in \([0, 2\pi)\) (reflecting the fact that if many identical but independent communication systems were run, their phases would be uncorrelated),

\[
R_x(\tau) = \frac{1}{2} R_s(\tau) \cos(2\pi f_c \tau) \iff S_x(f) = \frac{1}{4} \left[S_s(f - f_c) + S_s(f + f_c) \right].
\]

That is, \(S_x(f) \) is obtained by shifting \(S_s(f) \) to the right and to the left by \(f_c \) and dividing it by 4.

1.10 PSD of PAM Signals

Let \(a_n \) be a DT WSS random process with baud rate \(F_B = 1/T_B \) and consider the general PAM signal

\[
s(t) = \sum_{n=-\infty}^{\infty} a_n p(t - nT_B),
\]

where \(p(t) \) is a deterministic pulse. It is desired to determine the PSD \(S_s(f) \) of the CT random process \(s(t) \) in terms of the PDF \(S_a(\phi) \) of \(a_n \) and the FT \(P(f) \) of \(p(t) \). The autocorrelation
function of $a(t)$ is
\[
R_s(t_1, t_2) = E[s(t_1) s^*(t_2)] = E\left[\sum_{k=-\infty}^{\infty} a_k p(t_1 - kT_B) \sum_{\ell=-\infty}^{\infty} a_\ell^* p^*(t_2 - \ell T_B) \right]
\]
\[
= \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} E[a_k a_\ell^*] p(t_1 - kT_B) p^*(t_2 - \ell T_B) = R_a[k - \ell]
\]
\[
= \sum_{m=-\infty}^{\infty} R_a[m] \sum_{k=-\infty}^{\infty} p(t_1 - kT_B) p^*(t_2 - (k - m)T_B),
\]
where the substitution $k - \ell \rightarrow m$ was used for the last equality. Since $R_s(t_1, t_2)$ depends on the absolute values of t_1 and t_2 (and not just on $t_1 - t_2$), $s(t)$ is not a WSS process. However, $s(t)$ is cyclostationary with period T_B, i.e., for any integer k it satisfies
\[
E[s(t + kT_B)] = E[s(t)], \quad \text{and} \quad R_s(t_1 + kT_B, t_2 + kT_B) = R_s(t_1, t_2).
\]
Define the time-averaged autocorrelation function $\bar{R}_s(\tau)$, averaged over one period of $R_s(t_1, t_2)$ as
\[
\bar{R}_a(\tau) = \frac{1}{T_B} \int_0^{T_B} R_s(t + \tau, t) \, dt
\]
\[
= \frac{1}{T_B} \sum_{m=-\infty}^{\infty} R_a[m] \sum_{k=-\infty}^{\infty} \int_0^{T_B} p(t - kT_B + \tau) p^*(t - kT_B + mT_B) \, dt
\]
\[
= \frac{1}{T_B} \int_{-\infty}^{\infty} \sum_{m=-\infty}^{\infty} R_a[m] p(t + \tau) p^*(t + mT_B) \, dt = \int P^*(f) e^{-j2\pi f(t + mT_B)} \, df
\]
\[
= \frac{1}{T_B} \int_{-\infty}^{\infty} P^*(f) \sum_{m=-\infty}^{\infty} R_a[m] e^{-j2\pi m f T_B} \int_{-\infty}^{\infty} p(t + \tau) e^{-j2\pi f t} \, dt \, df = P(f) e^{j2\pi f \tau}
\]
\[
= \frac{1}{T_B} \int_{-\infty}^{\infty} S_a(f T_B) |P(f)|^2 e^{j2\pi f \tau} \, df.
\]
Since the last expression is just an inverse FT, the desired expression for $S_a(f)$ is
\[
S_a(f) = F_B S_a(f T_B) |P(f)|^2.
\]

Example: PSD of Unipolar Binary PAM. In this case $a_n \in \{0, 1\}$. Assuming that the a_n are iid (independent, identically distributed) with $Pr\{a_n = 0\} = Pr\{a_n = 1\}$, the
autocorrelation function of the DT random process \(a_n\) is

\[R_a[m] = E[a_{n+m} a_n^*] = \begin{cases} 1/2, & m = 0, \\ 1/4, & m \neq 0. \end{cases} \quad \implies \quad R_a[m] = \frac{1}{4} (\delta_m + 1). \]

Taking the DTFT of \(R_a[m]\) yields

\[S_a(fT_B) = \sum_{m=-\infty}^{\infty} R_a[m] e^{-j2\pi mfT_B} = \frac{1}{4} + \frac{1}{4} \sum_{k=-\infty}^{\infty} \delta(fT_B - k) = \frac{1}{4} + \frac{F_B}{4} \sum_{k=-\infty}^{\infty} \delta(f - kF_B). \]

Therefore, unipolar binary PAM with pulse \(p(t)\) has PSD

\[S_s(f) = \frac{F_B |P(f)|^2}{4} + \frac{F_B^2}{4} \sum_{k=-\infty}^{\infty} \delta(f - kF_B) |P(kF_B)|^2. \]

An example of \(S_s(f)\) for a random unipolar binary flat-top (i.e., rectangular \(p(t)\)) PAM signal with \(F_B = 100\) bits/sec is shown in the graph below.

Example: PSD of Polar Binary PAM. In this case \(a_n \in \{-1, +1\}\). Assuming that the \(a_n\) are iid (independent, identically distributed) with \(Pr\{a_n = -1\} = Pr\{a_n = +1\}\), the autocorrelation function of the DT random process \(a_n\) is

\[R_a[m] = E[a_{n+m} a_n^*] = \begin{cases} 1, & m = 0, \\ 0, & m \neq 0. \end{cases} \quad \implies \quad R_a[m] = \delta_m. \]

Taking the DTFT of \(R_a[m]\) yields

\[S_a(fT_B) = \sum_{m=-\infty}^{\infty} R_a[m] e^{-j2\pi mfT_B} = 1 \quad \implies \quad S_s(f) = F_B |P(f)|^2. \]
1.11 Symbol Timing Information

One way to extract symbol timing information from a received PAM signal

\[r(t) = \sum_{m=-\infty}^{\infty} a_m q(t - mT_B), \]

with baud rate \(F_B = 1/T_B \) is to pass \(r(t) \) through a squaring device as shown below.

\[r(t) \quad \text{Received PAM Signal} \quad (.)^2 \quad r_2(t) = r^2(t) \]

The output \(r_2(t) = r^2(t) \) of the squaring device is

\[r_2(t) = \sum_{k=-\infty}^{\infty} \sum_{\ell=-\infty}^{\infty} a_k a_\ell q(t - kT_B) q(t - \ell T_B), \]

and thus the autocorrelation function of \(r^2(t) \) is

\[
R_{r^2}(t_1, t_2) = E[r_2(t_1) r_2^*(t_2)]
= E \left[\sum_{k\ell} \sum_k \sum_{m\ell} a_k a_\ell a_m^* a_n^* q(t_1 - kT_B) q(t_1 - \ell T_B) q^*(t_2 - mT_B) q^*(t_2 - nT_B) \right]
= \sum_{k\ell} \sum_k \sum_{m\ell} E[a_k a_\ell a_m^* a_n^*] q(t_1 - kT_B) q(t_1 - \ell T_B) q^*(t_2 - mT_B) q^*(t_2 - nT_B). \]

To simplify this expression, assume that \(a_n \) is a stationary DT random process and assume that the \(a_n \) are iid (independent and identically distributed) random variables with zero mean. This implies that

\[E[a_k a_\ell a_m^* a_n^*] = E[a_k] E[a_\ell] E[a_m^*] E[a_n^*] = 0 \quad \text{if } k, \ell, m, n \text{ are all different}. \]

More specifically, under the above assumptions \(E[a_k a_\ell a_m^* a_n^*] \) can only be nonzero if either \(k = \ell \) and \(m = n \), or \(k = m \) and \(\ell = n \), or \(k = n \) and \(\ell = m \). Therefore

\[
R_{r^2}(t_1, t_2) = \sum_{k} \sum_{m} E[a_k^2 (a_m^*)^2] \left\{ q^2(t_1 - kT_B) (q^*(t_2 - mT_B))^2 + 2 E[|a_k|^2 |a_\ell|^2] q(t_1 - kT_B) q(t_1 - \ell T_B) q^*(t_2 - kT_B) q^*(t_2 - \ell T_B) + E[|a|^4] q^2(t_1 - kT_B) (q^*(t_2 - kT_B))^2 \right\}.
\]

17
Setting \(n \leftarrow k - m, \ k \leftarrow m, \) and \(n \leftarrow k - \ell, \ k \leftarrow \ell, \) respectively, yields

\[
R_{r2}(t_1, t_2) = \sum_n R_{a2}[n] \sum_k q^2(t_1 - kT_B) (q^* (t_2 - (k-n)T_B))^2 + \\
+ 2 \sum_n R_{m2}[n] \sum_k q(t_1 - kT_B) q(t_1 - (k-n)T_B) q^*(t_2 - kT_B) q^* (t_2 - (k-n)T_B) + \\
- 2 E[|a|^4] \sum_k q^2(t_1 - kT_B) (q^* (t_2 - kT_B))^2.
\]

This is the autocorrelation function of a cyclostationary random process with period \(T_B. \)

The time-averaged (over one period) autocorrelation function of \(r^2(t) \) is computed as

\[
\bar{R}_{r2}(\tau) = \frac{1}{T_B} \int_{T_B} R_{r2}(t + \tau, t) \, dt \\
= \frac{1}{T_B} \sum_n R_{a2}[n] \sum_k \int_{T_B} q^2(t + \tau - kT_B) (q^* (t - (k-n)T_B))^2 \, dt + \\
+ \frac{2}{T_B} \sum_n R_{m2}[n] \sum_k \int_{T_B} q(t + \tau - kT_B) q(t + \tau - (k-n)T_B) q^* (t - kT_B) q^* (t - (k-n)T_B) \, dt + \\
- \frac{2}{T_B} E[|a|^4] \sum_k \int_{T_B} q^2(t + \tau - kT_B) (q^* (t - kT_B))^2 \, dt.
\]

The combinations of an infinite sum over \(k \) and an integration over a finite time interval of length \(T_B \) can be combined into integrals for \(-\infty < t < \infty \) so that

\[
\bar{R}_{r2}(\tau) = \frac{1}{T_B} \sum_n R_{a2}[n] \int_{t} q^2(t + \tau) (q^* (t + nT_B))^2 \, dt + \\
+ \frac{2}{T_B} \sum_n R_{m2}[n] \int_{t} q(t + \tau) q^*(t) q(t + \tau + nT_B) q^* (t + nT_B) \, dt + \\
- \frac{2}{T_B} E[|a|^4] \int_{t} q^2(t + \tau) (q^* (t))^2 \, dt.
\]

Next, use inverse FTs of the form

\[
q(t+t_0) = \int_{\alpha} Q(\alpha) e^{j2\pi\alpha(t+t_0)} \, d\alpha, \quad \text{and} \quad q^*(t+t_0) = \int_{\mu} Q^*(\mu) e^{-j2\pi\mu(t+t_0)} \, d\mu,
\]
to obtain
\[
\tilde{R}_2(\tau) = \frac{1}{T_B} \sum_n R_{a2}[n] \int_t \int_{\alpha} Q(\alpha) e^{j2\pi\alpha(t+\tau)} d\alpha \int_{\beta} Q(\beta) e^{j2\pi\beta(t+\tau)} d\beta \times \\
\times \int_{\mu} Q^*(\mu) e^{-j2\pi\mu(t+nT_B)} d\mu \int_{\nu} Q^*(\nu) e^{-j2\pi\nu(t+nT_B)} d\nu dt + \\
+ \frac{2}{T_B} \sum_n R_{m2}[n] \int_t \int_{\alpha} Q(\alpha) e^{j2\pi\alpha(t+\tau)} d\alpha \int_{\beta} Q(\beta) e^{j2\pi\beta(t+\tau+nT_B)} d\beta \times \\
\times \int_{\mu} Q^*(\mu) e^{-j2\pi\mu t} d\mu \int_{\nu} Q^*(\nu) e^{-j2\pi\nu(t+nT_B)} d\nu dt + \\
- \frac{2}{T_B} E[|a|^4] \int_t \int_{\alpha} Q(\alpha) e^{j2\pi\alpha(t+\tau)} d\alpha \int_{\beta} Q(\beta) e^{j2\pi\beta(t+\tau)} d\beta \times \\
\times \int_{\mu} Q^*(\mu) e^{-j2\pi\mu t} d\mu \int_{\nu} Q^*(\nu) e^{-j2\pi\nu t} d\nu dt .
\]

After changing the order of integration and regrouping terms this becomes
\[
\tilde{R}_2(\tau) = \frac{1}{T_B} \sum_n R_{a2}[n] \int_t \int_{\alpha} Q(\alpha) Q(\beta) e^{j2\pi(\alpha+\beta)t} \int_{\mu} \int_{\nu} Q^*(\mu) Q^*(\nu) e^{-j2\pi(\mu+\nu)T_B n} \times \\
\times \int_{t} e^{-j\pi(\mu+\nu-\alpha-\beta)t} dt \ d\alpha \ d\beta \ d\mu \ d\nu + \\
\delta(\mu+\nu-\alpha-\beta) \\
+ \frac{2}{T_B} \sum_n R_{ma}[n] \int_t \int_{\alpha} Q(\alpha) Q(\beta) e^{j2\pi(\alpha+\beta)t} \int_{\mu} \int_{\nu} Q^*(\mu) Q^*(\nu) e^{-j2\pi(\nu-\beta)T_B n} \times \\
\times \int_{t} e^{-j\pi(\mu+\nu-\alpha-\beta)t} dt \ d\alpha \ d\beta \ d\mu \ d\nu + \\
\delta(\mu+\nu-\alpha-\beta) \\
- \frac{2}{T_B} E[|a|^4] \int_t \int_{\alpha} Q(\alpha) Q(\beta) e^{j2\pi(\alpha+\beta)t} \int_{\mu} \int_{\nu} Q^*(\mu) Q^*(\nu) \times \\
\times \int_{t} e^{-j\pi(\mu+\nu-\alpha-\beta)t} dt \ d\alpha \ d\beta \ d\mu \ d\nu .
\]

19
Now, use the change of variables \(f \leftarrow \alpha + \beta, \ f - \alpha \leftarrow \beta, \) and \(g \leftarrow \mu + \nu, \ g - \mu \leftarrow \nu: \)

\[
\tilde{R}_2(\tau) = \frac{1}{T_B} \int_{f} Q(\alpha)Q(f-\alpha)e^{j2\pi f\tau} \int_{\mu} Q^*(\mu)Q^*(g-\mu) \sum_{n} R_{a2}[n]e^{-j2\pi g T_B n} \times \\
\times \delta(g-f) \, df \, d\alpha \, dg \, d\mu + \\
+ \frac{2}{T_B} \int_{f} Q(\alpha)Q(f-\alpha)e^{j2\pi f\tau} \int_{\mu} Q^*(\mu)Q^*(g-\mu) \sum_{n} R_{m2}[n]e^{-j2\pi(g-\mu-f+\alpha) T_B n} \times \\
\times \delta(g-f) \, df \, d\alpha \, dg \, d\mu + \\
- \frac{2}{T_B} E[|a|^4] \int_{f} Q(\alpha)Q(f-\alpha)e^{j2\pi f\tau} \int_{\mu} Q^*(\mu)Q^*(g-\mu) \delta(g-f) \, df \, d\alpha \, dg \, d\mu.
\]

Since \(\delta(g-f) \) is zero unless \(g=f \), this simplifies to

\[
\tilde{R}_2(\tau) = \frac{1}{T_B} \int_{f} S_{a2}(f T_B) \left| \int_{\alpha} Q(\alpha)Q(f-\alpha) \, d\alpha \right|^2 e^{j2\pi f\tau} \, df + \\
+ \frac{2}{T_B} \int_{f} \int_{\alpha} \int_{\mu} S_{m2}((\alpha-\mu) T_B) Q(\alpha)Q(f-\alpha)Q^*(\mu)Q^*(f-\mu) \, d\alpha \, d\mu \, e^{j2\pi f\tau} \, df + \\
- \frac{2}{T_B} E[|a|^4] \left| \int_{\alpha} Q(\alpha)Q(f-\alpha) \, d\alpha \right|^2 e^{j2\pi f\tau} \, df.
\]

But, since this is in the form of an inverse FT, the PSD of the squared PAM signal \(r^2(t) \) (in which \(a_n \) is assumed to be a stationary DT random process consisting of iid random variables with zero mean) is finally obtained as

\[
S_{r2}(f) = F_B \left(S_{a2}(f T_B) \left| \int_{\alpha} Q(\alpha)Q(f-\alpha) \, d\alpha \right|^2 + \\
+ 2 \int_{\alpha} \int_{\mu} S_{m2}((\alpha-\mu) T_B) Q(\alpha)Q(f-\alpha)Q^*(\mu)Q^*(f-\mu) \, d\alpha \, d\mu + \\
- 2 E[|a|^4] \left| \int_{\alpha} Q(\alpha)Q(f-\alpha) \, d\alpha \right|^2 \right).
\]

The PSDs \(S_{a2}(\phi) \) and \(S_{m2}(\phi) \) are obtained from

\[
R_{a2}[n] = E[a_{k+n}^2(a_k^*)^2] \iff S_{a2}(\phi) = \sum_{n} R_{a2}[n] e^{-j2\pi \phi n},
\]

\[
R_{m2}[n] = E[|a_{k+n}|^2|a_k|^2] \iff S_{m2}(\phi) = \sum_{n} R_{m2}[n] e^{-j2\pi \phi n}.
\]
Both $R_{a2}[n]$ and $R_{m2}[n]$ contain a strong dc component and thus both $S_{a2}(\phi)$ and $S_{m2}(\phi)$ have a component of the form

$$1 \iff \sum_k \delta(\phi - k),$$

i.e., a component with impulses at normalized frequency $0, \pm 1, \pm 2, \ldots$. For the extraction of symbol timing information the first term in the formula for $S_{r2}(f)$ is used. Assuming that

$$S_{a2}(fT_B) = \sum_k \delta(fT_B - k) = \sum_k \delta(f/F_B - k),$$

this term is

$$F_B \sum_{k=-\infty}^{\infty} \delta(f/F_B - k) \left| \int_{-\infty}^{\infty} Q(\nu) Q(f - \nu) d\nu \right|^2.$$

Thus, $r_2(t)$ has a spectral component at F_B if the convolution $Q(f) \ast Q(f)$ is nonzero at $f = F_B$.

2 Lab Experiments

E1. showpsd Python Function. (a) Add the showpsd function given below to the showfun module. It is used to plot (an approximation to) the PSD of a CT signal $x(t)$ from its samples $x(nT_s)$, taken with sampling rate $F_s = 1/T_s$.

```python
def showpsd(sig_xt, ff_lim, N):
    # Plot (DFT/FFT approximation to) power spectral density (PSD) of x(t).
    # Displays $S_x(f)$ either linear and absolute or normalized in dB.
    # >>>>> showpsd(sig_xt, ff_lim, N) <<<<<
    # where sig_xt: waveform from class sigWave
    # sig_xt.signal(): sampled CT signal x(t)
    # sig_xt.get_Fs(): sampling rate of x(t)
    # ff_lim = [f1,f2,lim]:
    # f1: lower frequency limit for display
    # f2: upper frequency limit for display
    # lim = 0: display $S_x(f)$ linear and absolute
    # lim < 0: display $10 \times \log_{10}(S_x(f)/\max(S_x(f)))$
    # in dB with lower display limit lim dB
    # N: blocklength
```

21
***** Determine number of blocks, prepare x(t) *****
xt = sig_xt.signal() # Get x(t)
Fs = sig_xt.get_Fs() # Sampling rate of x(t)
N = int(min(N, len(xt))) # N <= length(xt) needed
NN = int(np.floor(len(xt)/float(N)))
Number of blocks of length N
xt = xt[0:N*NN] # Truncate x(t) to NN blocks
xNN = np.reshape(xt,(NN,N)) # NN row vectors of length N
***** Compute DFTs/FFTs, average over NN blocks *****
Sxf = np.power(abs(np.fft.fft(xNN)),2.0) # NN FFTs, mag squared
if NN > 1:
 Sxf = np.sum(Sxf, axis=0)/float(NN)
Sxf = Sxf/float(N*Fs) # Correction factor DFT -> PSD
Sxf = np.reshape(Sxf,np.size(Sxf))
ff = Fs*np.array(np.arange(N),np.int64)/float(N) # Frequency axis
if ff_lim[0] < 0: # Negative f1 case
 ixp = np.where(ff<0.5*Fs)[0] # Indexes of pos frequencies
 ixn = np.where(ff>=0.5*Fs)[0] # Indexes of neg frequencies
 ff = np.hstack((ff[ixn]-Fs,ff[ixp])) # New freq axis
 Sxf = np.hstack((Sxf[ixn],Sxf[ixp])) # Corresponding S_x(f)
df = Fs/float(N) # Delta_f, freq sample spacing
***** Determine maximum, trim to ff_lim *****
maxSxf = max(Sxf) # Maximum of S_x(f)
ixf = np.where(np.logical_and(ff>=ff_lim[0], ff<ff_lim[1]))[0]
ff = ff[ixf] # Trim to ff_lim specs
Sxf = Sxf[ixf]
strgy = 'PSD: $S_x(f)$' # ylabel string
***** Plot PSD *****
strgt = 'PSD Approximation, $F_s=${:d} Hz'.format(Fs)
strgt = strgt + ', $\Delta_f=${:.3g} Hz'.format(df)
strgt = strgt + ', $NN=${:d}, $N=${:d}'.format(NN, N)
f1 = plt.figure()
af1 = f1.add_subplot(111)
af1.plot(ff, Sxf, '-b')
af1.grid()
af1.set_xlabel('f [Hz]')
af1.set_ylabel(strgy)
af1.set_title(strgt)
plt.show()
import numpy as np
import comsig
import showfun

Fs = 44100 # Sampling rate
f1 = 700 # Test frequency 1
f2 = 720 # Test frequency 1
tlen = 2 # Duration in seconds

tt = np.arange(round(tlen*Fs))/float(Fs) # Time axis
x1t = np.sin(2*np.pi*f1*tt) # Sine with freq f1
x2t = 0.01*np.cos(2*np.pi*f2*tt) # Attenuated cosine with freq f2

sig_xt = comsig.sigWave(x1t+x2t, Fs, 0) # Combined sinusoidal signal

showfun.showpsd(sig_xt, [-1000, 1000, 0], Fs) # Plot S_x(f)

Obviously, it would be nice to be able to display $S_x(f)$ either absolute and linear or normalized in dB (so that the spectral lines of both sinusoids are visible). Add this enhancement to showpsd (as described in the function header), in a similar fashion as you did for the showft function.

(b) One useful feature of the PSD is that it can be used to compute the power over a range of frequencies, e.g., from f_1 to f_2, using the integral

$$P_x(f_1, f_2) = \int_{f_1}^{f_2} S_x(f) \, df.$$

Add a feature to showpsd so that it displays the total power P_x, as well as $P_x(f_1, f_2)$ for $f_1 = ff_lim[0]$ and $f_2 = ff_lim[1]$, in the title bar. The following two graphs show this for a rectangular pulse of width 100 ms and amplitude 1. The total length of the signal is 1 sec and the sampling rate is $F_s = 44100$ Hz.
The first graph uses a linear and absolute vertical axis and displays $P_x(f_1, f_2)$ as an absolute value. The second graph shows $S_x(f)$ normalized (i.e., maximum at 0 dB) and in dB and displays $P_x(f_1, f_2)$ as a percentage of the total power P_x.

(c) Generate about 5 sec of random binary polar PAM signals with rectangular, triangular, and sinc (tail length ≈ 20, no windowing) pulses. Use $F_B = 100$ and $F_s = 44100$ Hz and display the PSDs of the three signals in dB, with lower limit -60 dB, over the frequency range $-500 \ldots 500$ Hz. Set the blocklength to F_s. Verify that the PSDs look right. A reasonable rule of thumb for the bandwidth of PAM signals is $2F_B$ when $p(t)$ is rectangular, F_B when $p(t)$ is triangular and $F_B/2$ when $p(t)$ is a sinc pulse. Determine how much of the total signal power is contained within these bandwidths for the rectangular, triangular and sinc pulse cases.

(d) **PSD and Measuring Power in GNU Radio.** The GNU Radio flowgraph shown below is used to generate a random polar binary PAM signal with baud rate F_B from different types of pulses $p(t)$ (ptype = ‘man’, ‘RCf’, ‘rect’, ‘sinc’, ‘tri’) at the output of the Interpolating FIR Filter. The GLFSR (Galois Linear Feedback Shift Register) Source block generates a polar binary sequence (output symbols take on values of -1.0 or +1.0) with symbol rate F_B (=32 kbaud) at the output of the Throttle block. The Interpolating FIR Filter generates the PAM signal using the desired pulse shape $p(t)$ with sps samples per symbol from the pampt function in the ptfun module that you generated previously (you may still have to add the ‘man’ and the ‘RCf’ pulses). To look at the effect of bandlimiting the PAM signal, a Low Pass Filter with variable cutoff frequency $f_L = k/2F_B$, $k = 1, 2, 3, \ldots, \text{sps}$, is used. The output from this filter is displayed in the time and frequency domains using a QT GUI Time Sink and a QT GUI Frequency Sink. To measure the average signal power, the output is also squared, further lowpass filtered, and displayed using a QT GUI Number Sink.
The output generated by the flowgraph is shown in the next screen snapshot for a PAM signal based on a rectangular pulse \(p(t) \) after lowpass filtering at \(2F_B \).

Your task: For the rule of thumb that rectangular type signals have a bandwidth of \(2F_B \), triangular type signals have a bandwidth of \(F_B \), and ‘sinc’ type signals have a bandwidth of
\(F_B / 2 \), use the above GNU Radio flowgraph to determine how much of the total signal power is contained in these bandwidths for PAM signals using 'man', 'RCf', 'rect', 'sinc', 'tri' pulses \(p(t) \). For the 'RCf', 'sinc' pulses use a tail length of about \(10T_B \). For 'RCf' use \(\alpha = 0.2 \) and for 'sinc' use \(\beta = 0 \).

(e) Power in Complex-Valued Waveforms. Build the flowgraph given in the introduction that can produce 'Cosine', 'Square', and 'Triangle' waveforms, lowpass filter the waveforms, and display the results in the time and frequency domains, in the form of an amplitude histogram, and in terms of total average power. In this experiment the goal is to build a second flowgraph which generates the complex-valued versions of the same waveforms and then compare the average power readings. The new flowgraph is shown below.

What is the average power in the real part of a waveform ('Cosine', 'Square', and 'Triangle'), what is it in the imaginary part of the waveform. What is the total average power of a complex-valued waveform and how does it compare to the average power of the corresponding real-valued waveform?

E2. Generating and Estimating Noise. (a) If you need to generate white Gaussian noise in Python, you can use the following commands

```python
import comsig
Fs = 44100  # Sampling rate
tlen = 5    # Duration in seconds
tt = np.arange(np.round(tlen*Fs))/float(Fs)  # Time axis
nt = np.random.randn(len(tt))  # Gaussian noise n(t)
sig_nt = comsig.sigWave(nt, Fs, tt[0])
```
The PSD $S_n(f)$ of this $n(t)$ looks as follows:

\[
\begin{array}{c}
P_x = 1.004, P_x(f_1, f_2) = 90.76\%, F_s = 44100 \text{ Hz}, \Delta f = 1 \text{ Hz}, NN = 5, N = 44100
\end{array}
\]

It is often desirable to have bandlimited noise that has a constant PSD for all frequencies below some cutoff frequency f_L. This can either be obtained by filtering white noise with a lowpass filter, or by using a white noise sequence n_n with baud rate $2 \times f_L$ as the input to a PAM signal generator with a 'sinc' or 'RCf' pulse. Here is some Python code to implement this:

```python
import comsig

Fs = 44100  # Sampling rate
nfL = *** enter fL value ***  # Noise cutoff frequency
tlen = 5  # Duration in seconds
nn = np.random.randn(round(tlen*2*nfL))  # Gaussian noise, rate 2*nfL
sig_nn = comsig.sigSequ(nn, 2*nfL, 0)
sig_nt = pam11(sig_nn, Fs, 'rcf', [20, 0.2])  # Bandlimited noise n(t), rate Fs
```

The PSD of this bandlimited noise is shown in the next graph for $f_L = 4000$ Hz.

Using a sampling rate of $F_s = 44100$, generate 5 sec of white Gaussian noise (full bandwidth of $F_s/2$), of bandlimited Gaussian noise with $f_L = 4000$ Hz, and of bandlimited Gaussian noise with $f_L = 1000$ Hz. Plot the PSD’s of all three signals. Save the signals as wav-files and listen to each. Describe what you hear and how the different noises compare.
(b) Generate a random polar binary PAM signal $s(t)$ of length 2 sec with triangular $p(t)$. Use $F_B = 100$ and $F_s = 44100$. Then generate bandlimited Gaussian noise $n(t)$ with cutoff frequency $f_L = F_B$ (the rule of thumb bandwidth for PAM with triangular $p(t)$). Let $r(t) = s(t) + A n(t)$ be the received PAM signal. Use the `showeye` function to plot the eye diagram of $r(t)$. Adjust A such that the eye is approximately half closed as shown in the graph below. Determine at which signal-to-noise ratio (SNR) in dB this happens.

![Eye Diagram for r(t) with F_B=100, t_0=0*T_B, # Traces=150](image)

(c) **PAM signal SNR estimation in GNU Radio.** The GNU Radio flowgraph shown below generates PAM signals in the same way as the flowgraph described for experiment E1d. In addition, a Noise Source block, followed by a Low Pass Filter, is used to create bandlimited Gaussian noise that is added to the PAM signal. The PAM signal and the Gaussian noise are filtered by separate lowpass filters with the same characteristic so the signal power and the noise power can be measured separately. The signal to noise ratio (SNR) is computed and displayed in decibels using a Divide block, a Log10 block, and a QT GUI Number Sink block. There is also a provision to save the bandlimited noisy PAM signal in a 16-bit wav-file for later processing in Python.
A typical display that is obtained when running the flowgraph for a rectangular type PAM signal with 20 dB SNR is shown below.
Your task: Plot eye diagrams for rectangular PAM with bandwidth (both noise and PAM signal) $2F_B$ and SNRs of 20, 10, and 5 dB. Generate the bandlimited noisy PAM signals in GNU Radio and record the results in wav-files. Then use the `showeye` function in Python to plot the corresponding eye diagrams. Compare the results to the eyediagram of a rectangular PAM signal that is bandlimited to $F_B/2$ and has a SNR of 20 dB. An example of an eye diagram obtained in the way described above for a rectangular PAM signal with bandwidth of $2F_B$ and an SNR of 10 dB is shown next.

![Eye Diagram for r(t) with $F_B = 32000$ Baud, $t_0 = 0.48T_B$, # Traces=100](image)

Notes: Remember that 16-bit wav-files can only record signals with amplitudes less than 1. Thus, the Constant in the Multiply Constant block before the Wav File Sink needs to be set accordingly, especially for small SNRs (when the noise is relatively large compared to the signal). Also, the filters in the GNU Radio flowgraph need some time to get into steady-state. Thus, the first few seconds of the wav-file recordings should be discarded to obtain characteristic eye diagrams.

(d) Complex-Valued Noise in GNU Radio. Use the flowgraph for complex-valued waveforms from experiment E1e and replace the ‘Signal Source’ with a ‘Noise Source’. Change the ‘QT GUI Chooser’ so that you can select the ‘Noise Type’ of the ‘Noise Source’ between ‘Uniform’ and ‘Gaussian’ (with default ‘Gaussian’). Note that the other two noise types (‘Laplacian’ and ‘Impulse’) are currently not implemented. Extend the range of the cutoff frequency f_L all the way to $\text{samp_rate}/2$. Use the ‘QT GUI Range’ for the variable A to make the ‘Amplitude’ of the ‘Noise Source’ adjustable.

(i) Run the flowgraph for ‘Gaussian’ noise with $A=1$ and $f_L=16000$. The noise that you generate in this way is white Gaussian noise (in the frequency range from -16 kHz to +16 kHz). What is the total average power of the noise? What are the average powers of the
real and imaginary parts of the noise? How do the power readings change if A changes, e.g., from $A=1$ to $A=2$? What is the (theoretical) shape of the amplitude histogram? What is the (theoretical) shape of the PSD in the ‘QT GUI Frequency Sink’? What happens to the displays and the power reading if you change from $f_L=16000$ to $f_L=8000$? Determine the power spectral density N_0 for $A=1$.

(ii) Repeat (i) for ‘Uniform’ noise.

E3. Timing Information from PAM Signals. (Experiment for ECEN 5002, optional for ECEN 4652) (a) Generate the same PAM signals as in E1(c). In addition, also generate about 5 sec of a random binary polar PAM signal using an RCf pulse with $\alpha = 0.5$ and tail length $k \approx 5$. Look at the PSDs of

$$s^2(t), \quad \text{and} \quad |ds(t)/dt|,$$

where $s(t)$ is the PAM signal. The goal is to determine whether at least one of the two quantities has a spectral component at F_B that could be used to synchronize the receiver. What conclusions can you draw from the results?

(b) Look at the signals in pamsig401.wav, pamsig402.wav, and in pr1sig401.wav again. In particular, look at the PSD of the signal squared and/or raised to the 4-th power. Does it have a useful spectral component at F_B?