
1

© Copyright 2004 Linden H. McClure, Ph.D. 1

Assembly Language
Programming Basics

An introduction to microprocessor concepts,
assembly language, and assembly processes

Source File
(Text, .ASM)

Source File
(Text, .ASM)

Source
Linker

Assembly File
(Text, .ASM) Assembler

CompilerSource File
(Text, .C)

Assembly File
(Text, .ASM)

Object File
(Machine Code)

Source File
(Text, .ASM)

Object File
(Machine Code, .HEX)

Assembler
Listing File

(Text File, .LST, may include symbol table)

© Copyright 2004 Linden H. McClure, Ph.D. 2

Processor Overview
• Note: Many tutorials for microprocessor architecture and assembly language

programming are available on the Web (e.g. http://www.8052.com/tutorial.phtml or
http://goforit.unk.edu/asm/)

• Processor architecture – the hardware structure for a particular processing element.
Typically includes a control unit, an ALU (arithmetic logic unit), registers, and internal
buses; often includes specific registers called accumulators, special function registers
(SFRs), and integrated peripherals such as timers/counters, interrupt controller, etc.

• Processors often are classified as Harvard architecture (separate instruction and data
memory buses) or von Neumann/Princeton architectures (shared/multiplexed
instruction and data memory buses).

• Simple microprocessors or microcontrollers follow a simple state machine:

• The Program Counter (PC) register indicates the current program execution address.
• Storage areas include internal registers, internal RAM, internal ROM or flash, internal

EEPROM, external RAM, external ROM, external flash or EEPROM
• Address space – the addresses that the architecture can uniquely identify and

access. The address space is typically limited by the number of address lines and
sometimes by some special control signals. For example, an 8-bit processor with 16
address lines may be able to address 216 bytes of memory, addresses 0000h-FFFFh.

Fetch Decode Execute

2

© Copyright 2004 Linden H. McClure, Ph.D. 3

Computer Code Types and Execution
• Computer code provides a way to sequence operations and to control data flow within a

computer. Several levels of code exist:
– Object code or machine code is low level code specific to a particular processor architecture and is usually

written/shown in hexadecimal. Machine code is not very readable and is thus prone to human error. Typical
file name extensions include .hex or .obj

– Assembly code is low level code specific to a processor architecture and is written in human readable text.
Assembly code is more readable than machine code and provides a more robust way to generate correct
programs for a specific architecture. Typical file name extensions include .asm or .s

– High level code (like C) is written in human readable text and often hides the details of the underlying
computer architecture. High level code provides a way to generate easily readable code that can be easily
ported across processors and instruction sets. For the C language, the typical file name extension is .c

• Typical movement of data in the processor during program execution
– Processor comes out of reset, puts the reset vector address on the address lines, and fetches data from that

address (by activating the /PSEN line on the 8051)
– Processor decodes the data it read and treats it as an opcode, or a machine level instruction
– Depending on the opcode, the processor may fetch additional pieces of data, which are treated as operands

(the objects used by the instruction represented by the opcode)
– Processor executes the internal sequence dictated by the opcode and any operands
– If a result is generated, processor writes the result back into the destination
– Processor fetches data from the next appropriate address and repeats the process of decoding and

executing the instruction
• Each instruction takes a certain amount of time to execute, which is dictated by the hardware

state machine and the frequency of the processor clock

© Copyright 2004 Linden H. McClure, Ph.D. 4

Assembly Code Overview
• Opcodes are operation codes - the codes assigned to each processor

instruction (in the 8051, all codes 00h-FFh are defined except A5h)
• Operands are the objects used by the operation represented by the opcode
• Mnemonics are the human readable names given to individual opcodes
• Processor instructions are often classified into groups, such as:

– Data transfer instructions (e.g. MOV, MOVX, PUSH, POP, XCH)
– Arithmetic instructions (e.g. INC, ADDC, DEC, SUBB, MUL, DIV)
– Logic instructions (e.g. CLR, SETB, ANL, RRC, ORL, XRL)
– Control transfer (e.g. AJMP, LJMP, JMP, ACALL, LCALL, RET, DJNZ, JNB)

• A processor may support different addressing modes, such as register
addressing, direct addressing, indirect addressing, or immediate addressing

– Register addressing: the content of the named register (R0-R7) is used and the
least significant bits of the opcode specify the register (e.g. MOV R0,A)

– Direct addressing: the operand specifies the address of the register/memory to
be used (e.g. MOV $80,$81)

– Indirect addressing: the content of the addressed register is used as an address
(pointer), which is then accessed to provide the data for the instruction
(e.g. MOV [R0],A or MOV @R0,A)

– Immediate addressing: the value to be used as data in the instruction is included
directly in the instruction syntax and in the program memory (e.g. MOV R0,#0)

3

© Copyright 2004 Linden H. McClure, Ph.D. 5

Assembly Programming Overview
• An assembly program is written using a simple text editor. Each assembler

has specific syntax rules regarding the structure of the source file and the
names that are used to represent assembler directives, opcodes, and
operands. There are also syntax rules regarding comments in the file.

• Assembler directives are used by the assembler to control assembler
operation. For example, the assembler can be directed to output program
code at a specific address (using the ORG or .org directive).

• Assembly process:
– Create source file using a text editor and save it (.ASM)
– Execute commands from a DOS prompt to assemble your text file and create an

output hex file with a .HEX extension (e.g. ASM51 <filename> [options])
– If errors occur during the assembly, edit the source file to correct the syntax

error. A listing file (.LST) may be used to see what error the assembler
encountered. (e.g., to create a .LST file, use: ASM51 <filename> -F)

– Once the assembler executes without error, load the .HEX file into a simulator, or
into your target hardware (into EPROM, flash, or RAM)

– Execute your code and continue the debugging process

© Copyright 2004 Linden H. McClure, Ph.D. 6

Processes for Creating Executable Code

Source File
(Text, .ASM)

Source File
(Text, .ASM)

Object File
(Machine Code)Assembler

Object
Linker

Load File
(Machine Code)

Relocating
Loader

Compiler

Assembler

Source File
(Text, .C)

Object File
(Machine Code)

Object File
(Machine Code)

Source File
(Text, .ASM)

Object File
(Machine Code, .HEX)

Assembler
Listing File

(Text File, .LST, may include symbol table)

Source File
(Text, .ASM)

Source File
(Text, .ASM)

Source
Linker

Assembly File
(Text, .ASM) Assembler

CompilerSource File
(Text, .C)

Assembly File
(Text, .ASM)

Object File
(Machine Code)

4

© Copyright 2004 Linden H. McClure, Ph.D. 7

Example Assembly Code for 8051

* EMILY test1.asm program: Step through & increment local memory

ORG $0000
BEGIN MOV R0,#0 Begin at bottom of internal RAM

CLR A Zero initial value
LOOP1 MOV [R0],A Write to internal RAM

INC A Advance value
INC R0 Advance register
SJMP LOOP1 And continue

* EMILY test3.asm program: Init data memory with value in A
* Use the 'C'hange register command to set the initial value in A

ORG $0800
BEGIN MOV DPTR,#0 Begin at zero

MOV R2,#0 Low counter
MOV R3,#0 High counter

WRMEM MOVX [DPTR],A Write the value
INC DPTR Advance
DJNZ R2,WRMEM Loop 256 times
DJNZ R3,WRMEM LOOP 256*256 times

* Insert the ILLEGAL opcode to halt the simulation
DB $A5 Halt Emily52

© Copyright 2004 Linden H. McClure, Ph.D. 8

Example .LST and .HEX Files
Example .LST file (see test3.asm source file on previous slide)

DUNFIELD 8051 ASSEMBLER: test3 PAGE: 1

0000 1 ***
0000 2 * EMILY test program: Init data memory with value in A
0000 3 * Use the 'C'hange register command to set the initial value in A
0000 4 ***
0800 5 ORG $0800
0800 90 00 00 6 BEGIN MOV DPTR,#0 Begin at zero
0803 7A 00 7 MOV R2,#0 Low counter
0805 7B 00 8 MOV R3,#0 High counter
0807 F0 9 WRMEM MOVX [DPTR],A Write the value
0808 A3 10 INC DPTR Advance
0809 DA FC 11 DJNZ R2,WRMEM Loop 256 times
080B DB FA 12 DJNZ R3,WRMEM LOOP 256*256 times
080D 13 * Insert the ILLEGAL opcode to halt the simulation
080D A5 14 DB $A5 Halt emily

Example test3.hex Motorola S-record hex file generated using: ASM51 test3.asm -F

S11108009000007A007B00F0A3DAFCDBFAA57E
S9030000FC

Example test3.hex Intel hex file generated using: ASM51 test3.asm -FI

:0E0800009000007A007B00F0A3DAFCDBFAA582
:00000001FF

