What is the average power delivered by the source to the load? Assume that:

\[i_s(t) = I_A \cos(\omega t + \phi) \]

A \[P = RI_A^2 \cos^2(\omega t + \phi) \]

B \[P = \frac{1}{2} RI_A^2 \cos^2(\omega t + \phi) \]

C \[P = \frac{1}{2} RI_A^2 \]

D \[P = \left(R + \frac{1}{j\omega C} + j\omega L \right)I_A^2 \]

E \[P = \frac{1}{2} \left(R + \frac{1}{j\omega C} + j\omega L \right)I_A^2 \]
No power, on average, is absorbed or delivered by either the inductor or the capacitor. Average power delivered to resistor is

\[
P = \frac{1}{2} R |I_s|^2 = \frac{1}{2} R I_A^2
\]