Engineering the current–voltage characteristics of metal–insulator–metal diodes using double-insulator tunnel barriers

Sachit Grover *, Garret Moddel

Department of Electrical, Computer, and Energy Engineering, University of Colorado, Boulder, CO 80309-0425, United States

A R T I C L E I N F O

Article history:
Received 20 May 2011
Accepted 17 September 2011
Available online 10 October 2011

The review of this paper was arranged by Dr. Y. Kuk

Keywords:
MIM diode
Electron tunneling
Transfer-matrix method
MOM diode

A B S T R A C T

The femtosecond-fast transport in metal–insulator–metal (MIM) tunnel diodes makes them attractive for applications such as ultra-high frequency rectenna detectors and solar cells, and mixers. These applications impose severe requirements on the diode current–voltage (I/V) characteristics. For example, rectennas operating at terahertz or higher frequencies require diodes to have low resistance and adequate nonlinearity. To analyze and design MIM diodes with the desired characteristics, we developed a simulator based on the transfer-matrix method, and verified its accuracy by comparing simulated I/V characteristics with those measured in MIM diodes that we fabricated by sputtering, and also with simulations based on the quantum transmitting boundary method. Single-insulator low-resistance diodes are not sufficiently nonlinear for efficient rectennas. Multi-insulator diodes can be engineered to provide both low resistance and substantial nonlinearity. The improved performance of multi-insulator diodes can result from either resonant tunneling or a step change in tunneling distance with voltage, either of which can be made to dominate by the appropriate choice of insulators and barrier thicknesses. The stability of the interfaces in the MIIM diodes is confirmed through a thermodynamic analysis.

Published by Elsevier Ltd.

1. Introduction

Metal–insulator electronics [1,2] include not just diodes [3] but a whole suite of components including varactors [4], bipolar [5] and field-effect [6] transistors, and plasmonic waveguides [7,8]. At the core of each device is a metal/insulator/metal (MIM) tunnel diode. A key application for these diodes is in the detection and mixing of radiation in millimeter wave [9] and sub-millimeter [10] frequency rectennas [11]. Active research on MIM diodes is directed towards their use in rectifying antenna-coupled diodes (rectennas) for infrared detection [7,12,13] and photovoltaic energy conversion [14–16]. These high-frequency applications require diodes with low resistance and capacitance to facilitate efficient coupling to antennas [17]. Even though MIM diodes have been around for more than five decades, their applicability in rectennas at near-infrared to visible wavelengths is still a challenge [18].

An MIM diode consists of two metal electrodes that are spaced apart by several nanometers of insulator or a stack of insulators. Conduction of charge carriers through the insulator occurs via the femtosecond-fast mechanism of quantum tunneling [19,20]. Tunneling leads to nonlinear current–voltage (I/V) characteristics that depend on the shape of the barrier [21]. Based on the application, a diode with a high forward-to-reverse current ratio (asymmetry) or a sharp turn-on (nonlinearity) may be required. Low-resistance single-insulator MIM diodes fail to achieve these characteristics, but they can be improved upon with the incorporation of multi-insulator barriers [3,22,23]. Hegyi et al. [24] have conducted a simulation based investigation of parameters for an optimized double-insulator (MIIM) diode. However, their implementation fails to capture the effect of resonant tunneling [3], which can significantly alter the diode behavior. In another MIIM configuration [25], an abrupt change in tunnel distance with increasing bias voltage leads to a high forward-to-reverse current ratio. We develop an in-depth understanding of these effects and use them to design experimentally-feasible MIIM diodes with improved characteristics for high frequency rectennas.

In Section 2 we describe our simulation methodology and compare the I/V characteristics of MIIM diodes obtained from simulation and measurement. In Section 3, we explain the requirements for an efficient rectifier and point out the limitations of single-insulator diodes. In Section 4, we investigate the mechanisms by which double-insulators diodes can achieve better characteristics than single-insulator diodes. Based on these mechanisms, we design experimentally feasible MIIM diodes and compare their simulated characteristics with those of an MIM diode.
2. Tunnel current simulator

2.1. Simulation methodology

The shape of the tunnel barrier is determined by the work function of the metals, the electron affinity of the insulators, and the applied voltage. In addition, an electron in the vicinity of a metal experiences an image potential that causes barrier lowering [2]. The resulting barrier shape is used to calculate the electron transmission probability which, along with the Fermi distribution of electrons in the metals, provides the tunnel current. Consider the barrier shown in Fig. 1. An electron with total energy \(E \) and an effective barrier profile (dashed) gives a much higher probability for the electron to tunnel through the barrier. The transmission probability is calculated from the plane-wave solution of the Schrödinger equation obtained using the transfer-matrix method (TMM) [28] and the quantum transmitting boundary (QTBM) [29]. Both methods give identical results, as shown in Fig. 2. In comparison, the WKB approximation overestimates the transmission probability.

The transmission probability is calculated from the plane-wave solution for the Schrödinger equation using the transfer-matrix method (TMM) [28] and the quantum transmitting boundary method (QTBM) [29]. Both methods give identical results, as shown in Fig. 2. In comparison, the WKB approximation overestimates the transmission probability.

\[
T(E) = \frac{4\pi m_e}{\hbar^2} \int_0^\infty T(E_x) dE_x \int_{E_x}^\infty \left[f_L(E) - f_R(E + eV_D) \right] dE
\]

(1)

where the Fermi–Dirac distribution functions in the left \(f_L \) and the right \(f_R \) metal electrodes are

\[
f_L(E) = \frac{1}{1 + \exp \left(\frac{E - E_F}{kT} \right)}; \quad f_R(E + eV_D) = \frac{1}{1 + \exp \left(\frac{E - (E_F + eV_D)}{kT} \right)}
\]

(2)

The transmission probability is calculated from the plane-wave solution for the Schrödinger equation obtained using the transfer-matrix method (TMM) [28] and the quantum transmitting boundary method (QTBM) [29]. Both methods give identical results, as shown in Fig. 2. In comparison, the WKB approximation overestimates the transmission probability. Therefore, analytical \(I(V) \) formulae based on the WKB method [2,26,30] are not suitable for calculating the tunnel current in low-barrier diodes.

A more rigorous simulation technique is the Green’s function method [31], which is computationally intensive. We use the TMM for its ease of implementation. Also, the TMM uses a conduction band approximation to calculate the barrier for tunneling, which provides a visual aid for the design of tunnel diodes.

2.2. Comparison with experiment

Simulated and experimental characteristics of two asymmetric MIM diodes are compared in Fig. 3. The diodes are made from sputtered insulator and metal layers and the dimensions shown are the targeted thickness of the insulators based on deposition conditions and time. The parameters for the materials, used in
the simulation, are given in Table 1. The simulated $I(V)$ curves are in good agreement with the measured characteristics.

In the absence of an experimental estimate, the effective mass of the electron in the insulator (m_e) is assumed to be equal to the rest mass (m_0) [33]. Unlike crystalline semiconductors, for which m_e can be obtained from the band structure [34], the amorphous insulators under consideration require a direct experimental measurement to determine the effective mass [35].

2.3. Simulating multi-insulator diodes

In a multi-insulator diode, the dielectric constants of the insulators play an important role in determining the voltage drop across each insulator layer. To determine the energy-band profile at a certain bias (V_{bias}), we apply the condition for continuity of the electric displacement vector at each insulator interface and obtain the voltage drop across each layer

$$
\Delta V_j = (V_{bias} - V_{j+1}) \sum x_j/e_j/\sum x_j/e_j
$$

where x_j and ε_j represent the thickness and dielectric constant, respectively, of the jth layer, and $V_{j+1} = \psi_j - \psi_{j+1}$ is the built-in potential.

In a multi-insulator diode, the effect of the image force is calculated as

$$
V_{image} = \frac{e^2}{16\pi\varepsilon_0} \int_0^x \frac{1}{\varepsilon(x)dx} + \int_0^L \frac{1}{\varepsilon(x)dx}
$$

where $L = \sum x_j$ with K being the number of insulator layers. The integrals in the denominator represent the effective distance of an electron from the left or the right metal electrode, while accounting for the changing dielectric constant.

3. Shortcomings of single-insulator (MIM) diode

Eliasson [3] has extensively analyzed the possible variations of a single-insulator MIM diode. In a rectenna, a low resistance diode is necessary for efficient coupling to the antenna [18], and is achieved by keeping the barrier heights low. A high responsivity is required for efficient square-law (small-signal) rectification [17]. The responsivity is a measure of the diode nonlinearity and is defined as

$$
\eta = \frac{I}{V_{bias}^2}
$$

where I is the current, and V_{bias} is the operating voltage of interest. The variables parameters are the barrier heights, ϕ_0 and ϕ_R, and the insulator thickness.

Here we analyze these characteristics of several diodes. To make the comparison of multiple diode having different variation of resistance and responsivity with voltage tractable, we carry out the analysis at zero bias. In the comparison of MIM and MIIM diodes given in the next section it will become evident that MIM diodes are superior even at a non-zero bias. At zero bias, the responsivity is determined by the degree of asymmetry in the tunnel barrier heights, which results in the asymmetry in the $I(V)$ curves. In Fig. 4a and b, we plot the responsivity and resistance vs. the difference in barrier height on the left (ϕ_L) and the right (ϕ_R). Experimentally, this can be achieved by changing the metal on the left while keeping the insulator and the metal on the right fixed. As seen in Fig. 4a, only a small improvement in responsivity is obtained by increasing the barrier asymmetry for thin barriers but a substantial change for thicker barriers. However, the responsivity saturates at large asymmetry. For a fixed asymmetry, the responsivity is higher for thicker barriers, as shown in Fig. 4b. As the asymmetry increases with increasing asymmetry or increasing thickness, so does the resistance. In a rectenna, this negates the improvement in responsivity as the impedance match between the antenna and the diode becomes worse [18].

4. Double-insulator (MIIM) configurations

To obtain a high responsivity and low resistance diode, one can design an MIIM barrier with resonant tunneling [3,36]. Alternatively, an MIIM configuration can be designed to have a step-change in tunneling distance with voltage [25]. Both these mechanisms can occur in the same diode, with the overall asymmetry of the $I(V)$ curve regulated by the one that dominates. We examine these effects through the simulation of two double-insulator tunnel diodes.

Consider two MIIM diodes that have the same materials but different insulator thicknesses. Diode MIIM1 consists of W–Nb$_2$O$_5$ (3 nm)–Ta$_2$O$_5$ (1 nm)–W, and MIIM2 consists of W–Nb$_2$O$_5$ (1 nm)–Ta$_2$O$_5$ (1 nm)–W. The material parameters are listed in Table 1. This

<table>
<thead>
<tr>
<th>Metal</th>
<th>Work function (eV)</th>
<th>Insulator</th>
<th>Electron affinity (eV)</th>
<th>Dielectric constant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb [40]</td>
<td>4.33</td>
<td>Nb$_2$O$_5$ [40]</td>
<td>4.23</td>
<td>25</td>
</tr>
<tr>
<td>NbN [40]</td>
<td>4.7</td>
<td>Ta$_2$O$_5$ [40]</td>
<td>3.83</td>
<td>20</td>
</tr>
<tr>
<td>W [41]</td>
<td>4.55</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1

Material parameters for metals and insulators used in the simulations.
choice of materials and dimensions is not optimized for maximum nonlinearity or current but rather is chosen to demonstrate the difference between the resonant tunneling dominant in MIIM1 and the step change dominant in MIIM2.

For the two diodes, the conduction band profiles under positive and negative bias are shown in Fig. 5. A quantum well is formed in both MIIM diodes under positive bias (a) and (b). However, only in the MIIM1 is the quantum well wide enough to have a resonant energy level. On the other hand, under negative bias (c) and (d), only the step barrier-profile in MIIM2 leads to an abrupt change in the tunneling distance for the electrons near the Fermi level on the right metal-electrode.

The transmission probability for the four barrier profiles of Fig. 5 is shown in Fig. 6. The Fermi level at the left metal electrode is fixed at 10 eV. For low electron energies, the transmission probability $T(E_x)$ for the step (MIIM2) diode, represented by curves (b) and (d), is higher than for the resonant (MIIM1) diode, represented by (a) and (c). With increasing E_x, the transmission probability for the resonant diode at positive bias rises sharply near the resonant tunneling peak. Despite the barrier's larger thickness, the resonance peak rises higher than (b). The negative bias transmission probability in the resonant diode, (c), remains lower than in the step diode, (d), for most of the energy range that contributes to the net electron current ($10 < E_x < 10.4 \text{ eV}$). As E_x rises above the highest potential on the low-barrier insulator, the transmission probability exhibits oscillatory behavior for all four cases. In this energy range, the electrons tunnel through the high-barrier while the interference of the wavefunction in the low-barrier causes oscillations. These oscillations modify the probability of tunneling through the higher barrier to give the net transmission probability.

The $I(V)$ characteristics for the resonant and step diodes are shown in Fig. 7a. In the step diode, the tunneling distance for an electron under negative bias is small and hence the direct tunneling gives a large current. For the resonant diode, the resonant tunneling results in a larger current under positive bias, where the Fermi level for the metal at the left approximately matches

Fig. 5. Energy-band profiles for the resonant and step MIIM diodes. Forward and reverse bias profiles are shown respectively in (a) and (c) for the resonant, and in (b) and (d) for the step diode. The dotted lines show the profiles with barrier lowering. The diode parameters are given in Table 1. The thickness of the Nb$_2$O$_5$ layer is the only difference between the two diodes.

Fig. 6. Electron transmission probabilities for the resonant and step MIIM diodes of Fig. 5. The diode parameters are given in Table 1. A sharp resonance peak is observed in the resonant diode under forward bias due to the formation of a quantum well.

Fig. 7. (a) Current density vs. voltage for the MIIM diodes shown in Fig. 5, and a comparable asymmetric-MIM diode. The step MIIM diode has higher current magnitude under negative bias due to the direct tunneling of electrons across the high-barrier. The resonant MIIM diode has the opposite asymmetry in its $I(V)$ characteristic, due to the formation of resonant quantum well under positive bias. Comparing these with an asymmetric MIM diode we see that both the MIIM diodes have a smaller resistance (b) and larger nonlinearity (c) in their preferred direction of conduction.
the energy of the resonant well, than the direct tunneling under negative bias. Thus a sharper rise in current is seen under negative bias in the step diode and under positive bias in the resonant diode.

In Fig. 7a, we also compare the MIIM diodes to an asymmetric-MIM diode with barrier heights corresponding to a W–Nb2O5 interface on the left and a Ta2O5–W interface on the right and an insulator thickness of 2 nm. The asymmetric-MIM diode is effectively the MIIM2 diode without the abrupt step in the conduction band profile. This is confirmed by their similar current densities under positive bias. However, under negative bias the step change in tunnel distance in MIIM2 causes a sharp increase in tunnel current. This difference is also evident in the resistance and responsivity curves in Fig. 7b and c where, under negative bias, the sharp increase in current for MIIM2 leads to a lower resistance and a higher responsivity.

The resistance of the resonant diode is significantly higher at zero bias for MIIM2 leads to a lower resistance and a higher responsivity. In Fig. 7c where, under negative bias, the sharp increase in current in MIIM2 diode without the abrupt step in the conduction band profile.

This bias. However, under negative bias the step change in tunnel distance under positive bias causes the larger current.

This example shows that just changing the thickness of an insulator in an MIIM diode can lead to different asymmetry and nonlinearity. It does not suggest which of the mechanisms for achieving larger nonlinearity is preferable. We have analyzed several MIIM diodes designed for implementing these mechanisms and the performance improvement over MIM diodes is observed consistently. The mechanisms exemplified in MIIM diodes can also be applied to barriers with more than two insulators [37].

5. Thermodynamic stability

Sub-micron scale lithography and advanced deposition techniques have enabled the fabrication of metal–insulator diodes with a variety of materials and precise control over layer thicknesses. However, an arbitrary combination of metals and insulators may not be stable. A thermodynamic analysis of the interface stability is required to determine whether the intended barriers may be obtained in an experimental device. For the MIIM diodes discussed in the previous section, we have carried out a Gubb’s free energy analysis [38] for reaction between all interfacial pairs of materials using the FACTsage web software [39]. We analyze each of the pairs at room temperature and at 1000 K and confirm that no unintended interfacial compounds are formed.

6. Conclusions

We analyze the current–voltage characteristics of single-insulator MIM diodes and two double-insulator configurations. A comparison of thick and thin double-insulator diodes shows that the bias direction causing higher current depends on the electron-transmission-limiting mechanism. If a resonant energy-level is achievable under a particular bias, the current for this polarity can become larger than that under the opposite bias. In the absence of a resonant level, the step change in tunneling distance under the opposite bias causes the larger current. Compared to single-insulator diodes, both the resonance and the step-change mechanisms in double-insulator diodes result in a larger responsivity and a smaller resistance.

Acknowledgments

We thank Olga Dmitrievya, Xi Chen, and David Doroski for helping with the fabrication and measurement of the MIM diodes. This work was partially supported by DARPA through US Army Aviation & Missile Command Contract No. W31PQ-06-C-0296. We gratefully acknowledge additional partial support from a contract from Abengoa Solar.

References

[32] Probst Oliver M. Tunneling through arbitrary potential barriers and the
[33] Grossman EN, Harvey TE, Reintsema CD. Controlled barrier modification in Nb/
209.
[37] Korotkov A, Likharev K. Resonant Fowler-Nordheim tunneling through layered
p. 666.
equiwebmenu.php>.
[41] Camp M, Lecchini SMA. The work function of polycrystalline tungsten foil. Proc