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Abstract—We propose implementing cache coherence pro-
tocols within the network, demonstrating how an in-network
implementation of the MSI directory-based protocol allows
for in-transit optimizations of read and write delay. Our
results show 15% and 24% savings on average in memory
access latency for SPLASH-2 parallel benchmarks running
on a 4x4 and a 16x16 multiprocessor respectively.
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I. Introduction

WITH Moore’s law furnishing chip designers with bil-
lions of transistors, architects are increasingly mov-

ing towards multi-core architectures as an effective way of
dealing with escalating design complexity and power con-
straints. Commercial designs with moderate numbers of
cores have been announced with shared memory architec-
tures maintained with snoopy cache coherence protocols.
In future generations, as the number of cores scales be-
yond tens, more scalable directory-based coherence proto-
cols will be needed. However, there are well-known prob-
lems with the overhead of directory-based protocols: each
access needs to first go to the directory node to discover
where data is currently cached, or to uncover the sharers
so they can be invalidated. These traversals to and from
the directory node become increasingly costly as technol-
ogy scales.

There have been a plethora of protocol optimizations
proposed to alleviate the overheads of directory-based pro-
tocols (see Section IV). Specifically, there has been prior
work exploring network optimizations for cache coherence
protocols. However, to date, these protocols maintain a
firm abstraction of the interconnection network fabric as a
communication medium – the protocol consists of a series
of end-to-end messages between requestor nodes, directory
nodes and sharer nodes. In this paper, we propose remov-
ing this conventional abstraction of the network as solely
a communication medium. Specifically, we propose imple-
menting coherence protocols within the network, at each
router node. This opens up the possibility of optimizing a
protocol with in-transit actions.

Here, we target the classic MSI (Modified, Shared, In-
valid) directory-based protocol [7] as a first illustration of
how implementing the protocol within the network permits
in-transit optimizations that were not otherwise possible.
Figure 1(a) sketches a scenario where node B issues a read
request to the home directory node H, which then proceeds
to instruct a current sharer, node A, to forward its data to
node B. It consists of three end-to-end messages, B to H, H
to A, and A to B. Moving this protocol into the network al-
lows node B to “bump” into node A while in-transit to the
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Fig. 1. Optimization of the MSI protocol through an in-network
implementation for (a) reads and (b) writes.

directory node H, realize that it is in the shared state and
thus obtain the data directly from A, reducing the commu-
nication to just a round-trip between B and A. Figure 1(b)
illustrates the potential corresponding savings for a new
write request from node C. In the original MSI protocol, a
write request message needs to go from C to H, followed by
invalidations from H to A and B, corresponding acknowl-
edgments from A and B to H, before the data can be for-
warded to node C. An in-network implementation allows A
and B to start percolating invalidations and the accompa-
nying acknowledgments once C “bumps” into them enroute
to H. This in-transit optimization reduces write communi-
cation from two round-trips to a single round-trip from C
to H and back.

In the rest of the paper, we will describe the in-network
optimization of the MSI protocol in detail and discuss how
we formally verify its sequential consistency in Section II.
Next, in Section III, we present our preliminary simulation
results showing 15% and 24% reduction in average memory
access time when running a series of SPLASH-2 parallel
benchmarks running on a 4x4 and a 16x16 multiprocessor
respectively. Section IV discusses and contrasts against
prior related work while Section V concludes the paper.

II. In-network cache coherence

A. MSI directory-based protocol
A simple, classic directory-based cache coherence proto-

col is the directory-based MSI protocol [7]. Each cache line
is either Invalid, i.e. the local cache does not have a valid
copy of this data; Modified, i.e. the local cache has the only
copy of the cached data in the system and it is dirty; or
Shared, i.e. the local cache contains a valid, read-only copy
of the data, and furthermore other caches may also have a
read-only copy. A home node that houses the directory is
statically assigned to each memory address.

B. In-network MSI protocol (base)

Here, we outline the specifics of a base in-network imple-
mentation of the MSI protocol.

Virtual trees as directories. First, we propose the
notion of virtual trees maintained in the network – one for
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each cache line. The virtual tree consists of one root node
which is the node that first loads a cache line from off-chip
memory, all nodes that are currently sharing this line, as
well as the intermediate nodes between the root and the
sharers. The home node that used to house the directory
no longer stores the state of the cache line nor the sharers;
instead, it points in the direction of the root node of the
virtual tree. The nodes of the tree are connected by virtual
links with each link between two nodes always pointing
towards the root node.

Read accesses. When a node reads a cache line that
is not locally cached, it sends a read request message. If
the requesting node is not part of the virtual tree asso-
ciated with the read address, the read request message is
simply routed towards the static home node, just as it was
originally done in the MSI protocol. Should the message
encounter a node that is a part of the virtual tree enroute,
it detours and starts following the virtual links towards
the root node instead, i.e. each router directs the message
along the corresponding physical link towards the root.

A read request message terminates when it encounters a
node that has valid data cached for the address contained
in the message, or when it reaches the home node. If it
reaches a node containing valid data, a read reply message
is generated and sent back towards the original requester
node, along with the data. This in-transit optimization
of read latency is the result of our proposed in-network
implementation. If the read request message reaches the
home node, then one of two things may happen. First, if
the home node has an outgoing link pointing towards the
root node, then the message is forwarded in that direction,
in the same way as if it had intercepted the tree at any
other point, as above. Second, if the home node does not
have any outgoing links, then that means that no cache in
the network contains a valid copy of the data, and therefore
it must be loaded from off-chip memory. The data is then
read, placed in a read reply message and returned towards
the original requester.

When a read reply message routes back to the original
requesting node, it makes the following decision at each hop
along the way. If there exists a virtual link which connects
to a node that is one hop closer to the requester node, it
routes along the corresponding physical link. If, however,
there is no such virtual link, then the message constructs
a virtual link towards the requesting node, pointing in the
direction of the root node. The message is then routed
along the physical link corresponding to the newly created
virtual link.

Write accesses. A write begins similarly to a read in
that a write request message is sent towards the root node
if the requestor node is part of the virtual tree. Otherwise,
it is routed towards the home node. As in the original
MSI protocol, all write requests are handled by the home
node, i.e. the home node arbitrates between multiple write
requests and ensures sequential consistency by delaying the
updating of a cache line until all invalidations have been
sent and acknowledged.

In the simplest case, there are no virtual links for this ad-

dress at the home node, and the home node does not hold
a valid copy of the cache line, i.e., no virtual tree exists.
In this case, the home node sends a write reply message
back to the original requesting node, granting permission
to modify the data. Similarly to a read reply message,
a write reply message constructs virtual links as it routes
towards the requesting node that now becomes the root
node. Once the write request reaches the original request-
ing node, the cache line is written and the dirty bit is set.
As in the original MSI protocol, if a read request or tear-
down message comes by later and the dirty bit is set, the
cache line is written back to memory.

If, however, a virtual tree exists upon arrival of the write
request, then the tree will first be torn down or invali-
dated. Here, the in-network implementation again enables
in-transit optimization of invalidation delay. Enroute to
the home node, the first virtual tree node that the write
request message encounters will result in spawning of tear-
down messages along all virtual links off that node. These
teardown messages recursively propagate through the tree
until they reach the leaves of the tree. At a leaf, a teardown
message is turned into an acknowledgment message and
sent back up the tree towards the home node. An acknowl-
edgement message removes the virtual link connecting it
and its parent as it moves up the tree.

In this way, when the home node has no more virtual
links, it knows that the entire virtual tree has been suc-
cessfully torn down, and it is safe to send out a write reply
message to the original requesting node. From this point
everything proceeds as discussed above for the case where
no tree was found to exist for the given address.

B.1 Implementation

The only difference in the router microarchitecture that
implements the proposed protocol versus a typical inter-
connection network router is the addition of the virtual
tree cache. This virtual tree cache is accessed by the first
flit of a message (head flit) to determine its route, or the
output port this message should request for. It is accessed
in the same way as the regular data cache with the address
contained in each message’s header – if the tag matches,
and there is a hit in the tree cache, its prescribed direction
is used as the desired output port; else, the default routing
algorithm determines the desired output port. The vir-
tual tree cache can be accessed in parallel with the routing
pipeline stage and sized appropriately so the router pipeline
delay remains unchanged. For subsequent body and tail
flits, there is no change to the router pipeline; they follow
the route that is reserved by the head flit, linked via the
virtual channel ID stored in each flit header.

Each entry of the virtual tree cache consists of 8 bits (in
addition to the tag bits which depends on its size and asso-
ciativity) for a 2-dimensional network: a virtual link field
with 1 bit per north, south, east, west (NSEW) direction
(4 bits); two bits to describe which link leads to the owner
(2 bits); a busy bit (1); and an outstanding request bit (1).

The virtual link bit field has a bit set for each physical
link which is also a virtual link for the given address. Since
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a node can by definition have only one virtual link leading
to the root node, we only need two bits to encode which
link it is. The busy and outstanding request bits are both
used to maintain sequential consistency and not specific to
our proposed in-network MSI protocol. The busy bit only
applies to the home node; when set, it means that the home
node has sent out a teardown message and is waiting for the
return of the acknowledgments; this is used so that request
messages which arrive during the teardown of a tree will
queue up at the home node. The outstanding request bit
is used to ensure atomic (per address) memory operations.

In the event of a capacity miss in the virtual tree cache,
the network needs to evict an existing entry as well as other
virtual links of that address in the tree, i.e. it needs to tear
down the tree of which the victim entry is a member. Once
the existing tree has been removed, the construction of the
new, conflicting, tree can proceed.

Formal verification of sequential consistency. We
use Murφ [4], a model checking tool, to verify the sequential
consistency of our proposed in-network protocol. Due to
the exhaustive nature of the search, Murφ confines its ap-
plicability to finite-state machines. Using Murφ, we iden-
tified and verified the micro operations of data access, i.e.,
read/write, and corresponding node/network operations.
To each memory address, multiple concurrent reads and
up to two concurrent writes are allowed. Murφ verified
that our in-network protocol is sequentially consistent.

III. Simulation Results

We implemented a trace-driven architectural network
simulator, driven by memory traces gathered by running
a set of SPLASH-2 benchmarks [12] on Bochs [9], a multi-
processor simulator with embedded Linux 2.4 kernel. Each
benchmark was run in Bochs [9] and the memory trace
captured once, using sixteen threads. The trace for each
benchmark is then applied to 4-by-4, 8-by-8, and 16-by-16
systems (all 2D meshes). The sixteen threads are placed
randomly onto 16 nodes in the upper-left corner of the sys-
tem, mimicking the program being allocated a subset of
the system when multiprogrammed. For the 4-by-4 sys-
tem, the home node is in the middle, and for the larger
systems, the home node is in the lower-right corner; i.e. in
both cases, the directory is sited in our favor. As the sim-
ulator does not model network contention, having a single
home node does not create congestion delay. The results
assume infinite data and virtual tree caches, i.e. no evic-
tions. This lowers the potential savings of our approach
since it reduces the number of cache accesses. Average
memory access latency is measured in terms of hop count.
No off-chip latency is included since that will affect both
the original and in-network MSI protocols similarly.

Effect on average memory latency. The reduction
in average read and write access latencies for six SPLASH-2
[12] benchmarks with the proposed in-network implemen-
tation are presented in Figure 2. We see that for a 4-by-4
system, average read latency is reduced by an average of
21.5% across all benchmarks. For a 16-by-16 system, this
enlarges to an average of 30.2% lower read latency. The
same trend holds for average write latency, though lower
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Fig. 2. Reduction in read and write access latency for our protocol
as compared to typical directory-based MSI protocol.

savings is realized: an average of 7.4% reduction in write
latency for 4-by-4, and 18.4% for 16-by-16. As the results
show, a larger system yields higher savings in memory ac-
cess latency since the directory node is further away, pre-
senting greater potential for in-transit savings. The exam-
ple in Figure 1 explains why the potential savings in write
latency is lower: a read can potentially return immediately
once a sharer is encountered with a best-case latency of 2
hops, regardless of the system size; a write always needs to
go to the home node, with a best-case latency of a round-
trip traversal between the requestor and home node vs. two
round-trips, a 50% savings.

Storage overhead. There are two key differences in our
in-network implementation of the MSI protocol that affect
the storage overhead. First, in our in-network implementa-
tion, the home node no longer stores a list of sharers, but
only points to the root node. Now, though, each intermedi-
ate node needs storage for the virtual tree cache bits. Note
however that the in-network implementation enables the
storage of directions to sharers rather than actual sharer
addresses, with each node only knowing about itself and
its immediate neighbors. As a result, the virtual tree cache
line size grows with the dimension of the system (the num-
ber of immediate neighbors), rather than the total number
of nodes.

To calculate the storage overhead of our protocol, we
multiply the number of bits per virtual tree cache line by
the average number of active virtual tree entries, as tracked
by the simulator. We then calculate the storage overhead
of the MSI protocol (the sharer bit vector plus the busy
and outstanding request bits). In the interest of space, we
do not report per-benchmark results, but only the averages
here. For the 4-by-4 system, our protocol uses 16% more
storage; For the 8-by-8, this increases to 40% more over-
head. However, for the 16-by-16 system, our protocol uses
22% less storage space. This highlights the poor storage
scalability of the directory-based protocol whose sharer bit
vector scales with the size of the system.
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IV. Related Work

It has been shown in [1] that it is expensive to enforce
sequential consistency, as it requires ensuring a strict or-
dering between read/write accesses that mandates multi-
ple round-trips of request-invalidate-acknowledgment-reply
communications. As a result, extensive prior research has
focused on optimizing sequentially consistent systems.

Network optimizations. Prior work has demon-
strated the impact of the interconnection network on over-
all shared-memory system performance and proposed net-
work designs that can better the performance of cache co-
herence protocols. Stets et al. [13] demonstrated that net-
work features, such as network ordering, multicasting, can
greatly simplify coherence protocol implementation and
improve system performance. In [5], Fillo et al. presented
a crossbar-based cluster interconnect that provides vir-
tual shared memory supported by internodal address space
mapping. In [3], Dai and Panda presented block correlated
FIFO channels to tackle the memory ordering issue of net-
work interface design. These protocols still use the network
solely for communications though.

The closest work to our proposed in-network cache coher-
ence protocol is that by Kaxiras and Goodman [8], where
the benefits of a network-mapped protocol was first pro-
posed. They proposed a tree that is similar to the virtual
trees of our proposed protocol – the tree connects sharers
of a line and is mapped onto the network topology, so that
a sharer who is closer by than the directory can be reached
to reduce latency. However, they stop short of embedding
the protocol fully into the network, instead implementing
the protocol at network interface cards which constantly
snoop traffic and redirect traffic when needed by sinking
network packets and regenerating new ones with new des-
tinations. The underlying network thus remains purely for
communications. By moving the implementation of cache
coherence protocols into the network routers, we can realize
very-low-latency steering of the coherence traffic. In addi-
tion, by moving the directories into the network routers,
information needs no longer be kept on a per-node basis,
but can be kept on a per-direction basis, significantly im-
proving storage scalability.

Protocol optimizations. Substantial work has gone
into optimizing the deficiencies of the vanilla MSI proto-
col through new protocol states, with protocols supporting
relaxed consistency the most prevalent [1]. While relaxing
the consistency model lowers communication overhead, it
also complicates the programming model. Our proposed in-
network implementation of the MSI protocol reduces com-
munication overhead while ensuring sequential consistency.
Besides, end-to-end protocol optimizations are orthogonal
to in-transit optimizations; they can be further optimized
through an in-network implementation with the proposed
in-network virtual trees. For instance, our virtual trees can
be used to percolate tokens of the TokenB coherence proto-
col [10] to minimize communication overhead. Various co-
herence protocols which use pointers to maintain abstract
linked lists (such as SCI [6]) or trees (such as [11]) can also
be moved into the network, with the virtual links of our

virtual trees forming the hardware pointers between the
sharers. For instance, in [11], each node in the tree holds
pointers to its parent and children. The tree is optimally
balanced such that the distance from the root to any leaf is
bounded from above by log2(N), where N is the number of
nodes in the network. However, a parent-child relationship
in the tree does not necessarily map to a neighboring tile re-
lationship in the physical network. Therefore, the number
of actual hops required for a message to traverse the tree
from the root to any of the leaves is bounded from above
by Dlog2(N), where D is the diameter of the network. By
implementing these pointers within the network, using the
virtual links of our routers, physical network locality can
be leveraged in an efficient manner since the pointers are
at each router, rather than at the data caches of the nodes
themselves.

V. Conclusions
This paper serves as a proof-of-concept of the potential

benefits of in-network cache coherence. Next, we will ex-
plore the implementation of more sophisticated protocols,
such as relaxed consistency models, within the network,
leveraging the natural locality exposed by the network to
further optimize their overhead towards the ideal. Ulti-
mately, We see in-network cache coherence’s virtual trees
providing a scalable, distributed solution for capturing data
affinity in parallel applications, enabling efficient run-time
affinity-aware thread placement [2].

Acknowledgments

We would like to thank Kevin Ko for his help in generating the
trace files which we used in this work; Margaret Martonosi and the
rest of the Network Driven Processor (NDP) group at Princeton,
David Wood and the anonymous reviewers of the paper for their
helpful feedback towards this paper and future work. This work was
partially funded by the MARCO Gigascale Systems Research Center
and NSF EHS-0509402.

References

[1] S.V. Adve and K. Gharachorloo, “Shared Memory Consistency Mod-
els: A Tutorial,” IEEE computer, vol. 29, no. 12, pp. 66-76, 1996.

[2] J. Chen et al., “Hardware-Modulated Parallelism in Chip Multipro-
cessors,” in Proc. of Workshop on Design, Arch., and Simulation
of CMPs, held in conjunction with MICRO, November, 2005.

[3] D. Dai and D.K. Panda, “Exploiting the Benefits of Multiple-Path
Network in DSM Systems: Architectural Alternatives and Perfor-
mance Evaluation,” IEEE Trans. Comput., vol. 48, no. 2, pp. 236-
244, 1999.

[4] D.L. Dill, “The Murφ Verification System.” in CAV, 1996, pp. 390-
393.

[5] M. Fillo and R.B. Gillett, “Architecture and Implementation of
Memory Channel 2,” DEC Technical Journal, vol. 9, no. 1, 1997.

[6] S. Gjessing, et al., “The SCI Cache Coherence Protocol,” Kluwer
Academic Publishers, 1992.

[7] J.L. Hennessy and D.A. Patterson, Computer Architecture: A
Quantitative Approach. San Francisco, CA, USA: Morgan Kauf-
mann Publishers, Inc., 2003.

[8] S. Kaxiras and J.R. Goodman, “The GLOW Cache Coherence Proto-
col Extensions for Widely Shared Data,” in ICS ’96: Proceedings of

the 10th International Conference on Supercomputing. New York,
NY, USA: ACM Press, 1996, pp. 35-43.

[9] K.P. Lawton, “Bochs: A Portable PC Emulator for Unix/x,” Linux

J., vol. 1996, no. 29, p. 7, 1996.
[10] M.M.K. Martin, M.D. Hill, and D.A. Wood, “Token Coherence: De-

coupling Performance and Correctness,” in Proc. Int. Symp. Com-
puter Architecture, Jun. 2003.

[11] H. Nilsson and P. Stenström, “The Scalable Tree Protocol - A Cache
Coherence Approach for Large-Scale Multiprocessors,” in Proc. of
the Fourth IEEE Symp. on Par. and Dist. Proc. IEEE Computer
Society Press, 1992, pp. 498-506.

[12] http://www.flash.stanford.edu/apps/SPLASH/
[13] R. Stets et al., “The Effect of Network Total Order, Broadcast, and

Remote-Write Capability on Network-Based Shared Memory Com-
puting,” in Proc. Int. Symp. High Perf. Comp. Arch., Feb. 2000.

IEEE Computer Architecture Letters Vol. 5, 2006


