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ABSTRACT
With ever-increasing power density and cooling costs in mod-
ern high-performance systems, dynamic thermal manage-
ment (DTM) has emerged as an effective technique for guar-
anteeing thermal safety at run-time. While past works on
DTM have focused on different techniques in isolation, they
fail to consider a synergistic mechanism using both hard-
ware and software support and hence lead to a significant
execution time overhead.

In this paper, we propose HybDTM, a methodology for
fine-grained, coordinated thermal management using a hy-
brid of hardware techniques, such as clock gating, and soft-
ware techniques, such as thermal-aware process scheduling,
synergistically leveraging the advantages of both approaches.
We show that while hardware techniques can be used reac-
tively to manage thermal emergencies, proactive use of low-
overhead software techniques can rely on application-specific
thermal profiles to lower system temperature. Our technique
involves a novel regression-based thermal model which pro-
vides fast and accurate temperature estimates for run-time
thermal characterization of applications running on the sys-
tem, using hardware performance counters, while consider-
ing system-level thermal issues. We evaluate HybDTM on
an actual desktop system running a number of SPEC2000
benchmarks, in both uniprocessor and simultaneous multi-
threading (SMT) environments, and show that it is able
to successfully manage the overall temperature with an av-
erage execution time overhead of only 9.9% (16.3% maxi-
mum) compared to the case without any DTM, as opposed
to 20.4% (29.5% maximum) overhead for purely hardware-
based DTM.
Categories and Subject Descriptors: B.7.2 [Hardware]:
Design Aids
General Terms: Design, performance
Keywords: dynamic thermal management, thermal model,
hybrid hardware-software management

1. INTRODUCTION
Escalating chip complexity and associated power budgets

have led to increasing chip temperatures. Higher tempera-
tures adversely affect circuit reliability and lead to timing
uncertainties, prompting wider timing margins, and hence
degrade performance. Traditional design of cooling pack-
ages in high-performance systems for worst-case tempera-
ture spikes is no longer cost-effective. This has resulted in
the move towards solutions [3] specified for average temper-
ature contribution of the chip, and using DTM techniques
to tackle infrequent occurrences in which the chip tempera-
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ture exceeds the thermal limit supported by the packaging
and cooling solution.

Researchers in the recent past have proposed a number
of DTM techniques using either hardware or software mech-
anisms [5, 6, 16]. While hardware-based techniques, such
as dynamic voltage scaling (DVS), clock gating, fetch tog-
gling, etc., are effective in managing temperature, they in-
cur a high execution time overhead. Moreover, they ignore
application-specific information. Hence, in case of thermal
emergencies, all applications are penalized equally and suffer
an equal impact in performance. Software-based techniques
using an operating system (OS), such as energy-aware pro-
cess scheduling, on the other hand, have a lower performance
impact, but cannot guarantee thermal safety. This calls for
a hybrid approach towards managing overall temperature,
which uses both hardware-based and software-based DTM
techniques in a coordinated fashion to tackle thermal emer-
gencies with much lower execution time overhead.

Implementing a hybrid DTM technique using OS support
requires a thermal model which can provide fast and ac-
curate temperature predictions without imposing a large
overhead on the critical path. Prior work on architecture-
level thermal modeling [5,14,16] has mostly focused on using
power models first to estimate the power consumption of dif-
ferent microarchitectural units and then feeding it as input
to a complex thermal model for estimating temperature val-
ues, requiring multiple iterations. Hence, such approaches
are inherently slow and incur a large overhead each time
they are invoked.

In this paper, we first develop a novel regression-based
thermal model for providing fast and accurate predictions
of the processor temperature directly from hardware per-
formance counters found in most modern processors, e.g.,
Pentium 4 [1]. Having extremely low overhead, our model
can be integrated inside the OS for doing fine-grained DTM.
Moreover, it is able to account for system-wide effects by
considering run-time variations in the ambient temperature
due to the thermal contribution of other system components,
such as the memory module. Using this model, we keep
track of both the overall processor temperature as well as
the thermal contribution of each application running on the
system. We then propose HybDTM, a hybrid hardware-
software DTM technique using both proactive software mech-
anisms, such as thermal-aware scheduling, to avert ther-
mal emergencies and reactive hardware mechanisms, such
as clock gating, to deal with thermal emergencies when they
occur. We implemented our proposed technique on an actual
desktop machine with an Intel Pentium 4 processor running
under a modified Linux 2.6.9 OS in both uniprocessor and
SMT configurations and evaluated its effectiveness using a
range of SPEC2000 benchmarks. We present a compara-
tive study analyzing the pros and cons of purely software-
based DTM, purely hardware-based DTM and HybDTM,
and show that HybDTM is able to effectively manage the
overall temperature with an average execution time over-
head of only 9.9% (16.3% maximum) compared to the case
without any DTM, while the corresponding average over-
head for hardware-based DTM is 20.4% (29.5% maximum).
A brief summary of our contributions is as follows:
• A novel low-overhead hybrid DTM technique using
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hardware and software mechanisms in a synergistic
fashion.
• A new thermal model providing fast and accurate pre-

dictions of the overall processor temperature directly
from hardware performance counters, while consider-
ing system-wide temperature variations.
• A modified thermal-aware OS to do online thermal

characterization of each process as well as the entire
system as a whole in both uniprocessor and SMT en-
vironments.
• Analysis of thermal issues at the system level consid-

ering other system components, such as the memory,
along with the processor.

2. OVERVIEW
Fig. 1 presents the high-level overview of our proposed

hybrid DTM implementation.
Hardware setup: The desktop machine used in our study
is a 3.2GHz Pentium 4 processor, with a 8KB L1 and 512KB
L2 cache, and 800MHz front side bus, supporting hyper-
threading technology. Pentium 4 supports an on-die thermal
diode [2] whose value can be read using an external thermal
sensor. We use this feature to measure the processor tem-
perature at periodic intervals. The processor has 18 hard-
ware counters which are capable of counting up to 18 hard-
ware events simultaneously. We configured these counters
to track the usage of different processor microarchitectural
units along with the memory module. Pentium 4 also sup-
ports software-controlled clock modulation [1], allowing the
OS to throttle the processor clock in certain discrete steps to
manage processor power and hence temperature. This fea-
ture is used by our DTM policy for hardware-directed DTM.
The memory used in our system consists of two 512MB Sam-
sung DDR400 SDRAM modules, used in a dual-channel con-
figuration. We use an ASUS P4P800SE motherboard which
supports a Winbond W83627THF Super I/O chip which is
capable of sensing the processor temperature, using the on-
die thermal sensor mentioned above, along with the ambient
temperature. Temperature values are read from this Super
I/O chip through the system management bus (SMBus).
Software setup: The OS used in our setup is a modified
Linux 2.6.9 kernel. To make the OS thermal-aware, we inte-
grated our regression-based thermal model into the kernel.
Our model uses hardware performance counters as input to
gather the thermal profiles of the individual applications
running on the system as well as estimate the overall tem-
perature at run-time. Online temperature readings from the
hardware sensor are used for periodic training of our model
to account for changes in the cooling package. We also im-
plemented our fine-grained hybrid DTM policy inside the
kernel for providing software directives to the scheduler for
scheduling processes in a thermal-aware fashion as well as
hardware directives to the processor for setting the appro-
priate clock throttling ratio in case of thermal emergencies.
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Figure 1: Overview of proposed HybDTM solution.

3. FROM PERFORMANCE COUNTERS TO
TEMPERATURE

High power density in modern processors has led to com-
plex cooling designs. Thermal characterization and manage-
ment requires models which can accurately predict the over-
all chip temperature taking into consideration these complex
cooling package designs as well as the ambient environment.

3.1 Related work in thermal modeling
Prior work on architecture-level thermal modeling for mi-

croprocessors [14, 16] has made use of the duality between
thermal and electrical circuits by considering the thermal
resistances and capacitances of different microarchitectural
units and different layers of the cooling package. While these
models can be used for early design stage analysis and DTM,
their major drawback is that they involve complex calcula-
tions and hence incur a large overhead every time they are
invoked [13]. Researchers have also looked at using perfor-
mance counters to model processor power and developing an
RC network based thermal model on top of it to estimate
temperature [10,18]. This two-step process again has a high
overhead and is hence not suitable for obtaining frequent es-
timates of the processor temperature. Moreover, it fails to
account for system-wide thermal effects where the temper-
ature of the processor is affected not just by its own power
consumption but by the temperature of other system com-
ponents, such as the memory. Such effects are prominent in
closed systems, such as desktops and laptops, and ignoring
them can lead to significant errors in temperature estima-
tion. Using hardware temperature sensors, supported by
modern microprocessors, such as Pentium 4 [2], to monitor
the run-time temperature, takes a long time (of the order of
ms) to obtain each temperature reading. This makes this
approach unable to capture transient temperature spikes in
the processor temperature, which can change at a much
faster rate.

Our approach to characterizing the thermal behavior of
different applications and the entire processor, in general,
is based on using hardware performance counters, along
with a regression-based thermal model. We use performance
counters to predict temperature directly, without the use of
any complex RC network, which lowers the overhead of our
model significantly, thereby making it feasible to integrate
it inside the OS for implementing fine-grained DTM.
3.2 Performance counters for thermal charac-

terization of applications
Most modern processors provide performance counters to

allow monitoring of specific hardware events for the purpose
of debugging and system tuning. The Pentium 4 proces-
sor supports 18 hardware performance counters [1], which
can be configured using particular model-specific registers
(MSRs) to count upto 18 hardware events simultaneously.
The details of the processor microarchitecture can be found
in [8].
Performance counter setup: The performance monitor-
ing hardware in Pentium 4 broadly consists of event detec-
tors and event counters. The event detectors can be config-
ured to detect several hardware events, such as cache misses,
number of instructions retired, number of instruction trans-
lation look-aside buffer (ITLB) references, number of data
translation look-aside buffer (DTLB) references, etc. A de-
tailed description of the performance monitoring features of
Pentium 4 can be found in [1, 17].

For characterizing the thermal behavior of each individ-
ual application, we first characterize the usage of different
microarchitectural units by the application, using a set of
21 hardware events covering different on-chip physical sub-
units. The different units targeted include the floating point
unit, memory order buffer, L1 cache, DTLB, instruction
fetch logic, branch predictor unit, floating point register file,
ITLB, L2 cache, bus control, retirement logic, microcode
ROM, instruction decoder, allocation logic, trace cache, re-
name logic, instruction queue and instruction scheduler. No
direct counter is available for counting the number of integer
instructions. However, we can indirectly estimate this num-
ber from the total number of instructions and total number
of non-integer instructions. Since we use a linear regression
model for estimating temperature using performance coun-
ters, this linear combination is automatically factored into
our model.
3.3 Accounting for system-wide effects

Microprocessor heat dissipation is significantly affected by
the ambient temperature, which in a closed system, such as a
desktop or laptop, is determined by the power consumption
of several system components together. Apart from the pro-
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cessor, the other major component which affects the ambient
temperature is the memory module. Modern DDR SDRAM
modules can consume large amounts of power which has led
to prior work being done on dynamic power management
for memories [7]. We developed a simple power and thermal
model for memory using the approach followed in [4, 11] to
estimate its temperature assuming different usage patterns.
We found that although the memory temperature did not
reach very high values, with the peak temperature found
to be below 52oC, it showed significant variations of upto
8oC depending upon usage. Therefore, it can be seen that
the memory temperature can significantly affect the ambient
conditions and hence memory usage needs to be accounted
for while modeling the processor temperature.

Based on the above observation, we configured one of the
counters in our setup, to count the number of read and write
transactions on the bus. We used this as a proxy for memory
usage and added it as an input to our model, bringing the
total number of hardware events monitored to 22.
3.4 Regression analysis

Different microarchitectural units in a processor may con-
tribute differently towards the overall chip temperature. For
example, similar usage of the floating-point unit and ITLB
by an application may have vastly different impact on the
overall temperature. Hence, when using performance coun-
ters to estimate temperature, the usage of different units
has to be weighted appropriately. We use a regression based
approach to find weights corresponding to each of the 22
hardware events used in our model. The basic equation for
estimating temperature is as follows.

Toverall = wconst +

22
X

i=1

wi

ui

ttotal

(1)

where Toverall is the overall chip temperature, wconst is the
temperature contribution due to the energy dissipated by
the processor when it is idle, wi is the regression coefficient
corresponding to hardware event i, ui is the aggregate value
of the performance counter for event i, and ttotal is the to-
tal number of processor clock cycles elapsed. Here, wi is
a measure of the thermal contribution of hardware event i
towards the overall temperature.

In order to find the regression coefficients mentioned above,
we need to consider the entire regression space, taking into
account the contribution of each hardware event in isolation
(to capture the thermal impact of different microarchitec-
tural units) as well as their different possible combinations
to capture the interaction between different events (lateral
thermal correlation between different units). For this, we
wrote a set of 30 thermal microbenchmarks targeting differ-
ent microarchitectural units or their combinations. To cover
the entire regression space, we ran the microbenchmarks in-
dividually as well as several combinations of them. Dur-
ing each run, we collected the values of different hardware
events using our performance counter setup. This formed
the predictor set in our regression equation. We measured
the steady-state temperature of each microbenchmark run,
using the on-die thermal sensor. For this, we used our hard-
ware setup, as explained in Section 2. The temperature val-
ues for each run formed an observation set in our regression
equation.
Processor thermal model: We used partial least-squares
(PLS) regression to find the coefficients corresponding to dif-
ferent hardware events. PLS minimizes the sum-of-squares
of the deviations of different data points from the actual
model while explaining as much as possible the covariance
between the predictor variables and observations. The re-
gression equation is given as:
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where uij denotes the normalized usage of hardware event j
by microbenchmark i, wconst denotes the constant term, wj

denotes the regression coefficient for hardware event j and

Ti denotes the temperature observed for microbenchmark i.
Run-time training: Changes in the cooling and ambi-
ent conditions can significantly affect the processor temper-
ature. To adapt our model to such changes, we readjust
our regression coefficients by doing selective runs of our mi-
crobenchmarks at periodic time intervals, which being infre-
quent, can be done when the system is idle.
Overhead: We integrated our model inside the Linux ker-
nel and measured its execution time overhead by running a
number of microbenchmarks. The execution time was found
to increase by less than 2% on average for all the runs.

3.5 Validation
Using the set of microbenchmarks we developed, our anal-

ysis showed that the regression coefficients obtained using
PLS were able to explain 100% covariance with the predic-
tor set and 93% covariance with the observation set. Fig. 2
shows the measured and estimated steady-state tempera-
ture values for a number of microbenchmarks. It can be
seen that the steady-state temperature prediction using our
regression-based thermal model closely tracks the tempera-
ture measured from the on-die thermal diode, with the av-
erage error for all runs found to be less than 5%.
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Figure 2: Validation of thermal model for each mi-
crobenchmark

3.6 Limitations
Our regression-based thermal model is based on tempera-

ture values measured from the on-die thermal diode in Pen-
tium 4. We assume that this value corresponds to the tem-
perature of the hottest unit of the chip or the “hotspot”.
This limitation is purely processor-specific and in the fu-
ture as more on-die sensors are added to the processor, the
“hotspot” temperature can be measured more accurately.
Another limitation of our model is that due to the lim-
ited number of counters available for counting floating-point
events simultaneously, we use time-multiplexing of counters
to estimate the usage of floating-point units. However, since
in our setup, we change the counter configuration on every
context switch, this error is minimal.

4. HYBRID DTM
In this section, we propose a hybrid DTM policy which

makes use of both hardware and software mechanisms in
a synergistic fashion to alleviate thermal emergencies with
minimal performance impact. The major components of our
proposed policy are shown in Fig. 3.
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4.1 Related work in DTM
DTM techniques [6, 9, 16] used to manage chip temper-

ature employ some mechanism to lower the total energy
consumption in case of thermal emergencies. While do-
ing so lowers the overall temperature, this comes at the
cost of increased execution time. Furthermore, using dif-
ferent hardware-based DTM techniques, such as DVS, clock
gating, fetch toggling, etc., or their combinations [15], af-
fects the performance of all applications equally in case of
thermal emergencies, thereby leading to worse overall per-
formance. Different applications running on a system may
contribute differently to the overall temperature, depend-
ing on the way they utilize the processor resources. For
example, consider two applications running on a system
– one of them compute-intensive and the other an inter-
active application. Interactive applications are often not
CPU-intensive and remain blocked during a large chunk of
their execution time waiting for user response. If the pro-
cessor temperature crosses the thermal emergency level, a
DTM technique, which is not application-aware, will penal-
ize both these applications equally, thereby leading to higher
user-perceived latency for the interactive application. While
software-based DTM can factor in application-specific ther-
mal behavior [18], a coordinated and fine-grained use of both
hardware and software support is needed to minimize the
performance impact while guaranteeing thermal safety.

4.2 Run-time thermal characterization
Our approach towards characterizing the thermal contri-

bution of individual processes involves gathering the us-
age pattern of different processor microarchitectural units
at run-time and then using this as an input to our ther-
mal model to directly estimate temperature. For each pro-
cess, we keep track of the short-term (local) and long-term
(global) history of temperature values. The local tempera-
ture tlp captures the transient variations in process temper-
ature and is equal to the temperature contribution of the
process when the last time it ran on the processor before
being context switched out by a different process. On the
other hand, the global temperature tgp is calculated based
on the aggregate of the counter values for each process and
measured from the time the process started. The overall
temperature contribution of the process is then given as:

Tprocess = wlptlp + wgptgp (2)

where Tprocess is the overall temperature contribution of the
process, and wlp and wgp the corresponding weights given
to the local and global temperatures. wlp is given a higher
value than wgp to capture transient variations in the process
temperature.

A similar method is followed to estimate the overall tem-
perature of the entire chip. The local temperature compo-
nent Tl of the overall temperature is calculated by taking
a weighted average of the last 10 temperature values con-
tributed by the last 10 processes that ran on the system.
The weight of each value is the ratio of the time for which
each process ran and the total time. The equation for cal-
culating Tl is given below.

Tl =

10
X

i=1

Ti

ti

ttotal

where ttotal =

10
X

k=1

ti (3)

Ti is the temperature value during schedule i, ti is the du-
ration of schedule i, and ttotal is the total duration of the
last 10 schedules. The linear weighted average used here is a
good approximation because the last 10 values correspond to
a very short time interval, which can be approximated using
a linear equation. The overall global temperature Tg, which
is a measure of the average energy stored in the processor,
is calculated by feeding the aggregate counter values for all
processes that ran on the system to our thermal model. The
overall chip temperature is then given as:

Toverall = wlTl + wgTg (4)
where Toverall is the overall processor temperature, and wl

and wg the weights corresponding to the local and global
temperature components. Again, wl is given a higher value
than wg to account for transient variations above the aggre-
gate energy stored in the processor. In our experiments, we

found that wlp = wl = 0.7 and wgp = wg = 0.3 gave the
most accurate temperature estimates.

4.3 Proactive software-directed DTM
Thermal-aware process scheduling is an effective way to

alleviate thermal emergencies with low performance impact.
Using it proactively can help maintain the temperature be-
low thermal emergency levels, and hence obviate the need
for more aggressive DTM techniques which have a higher
overhead.

The existing Linux scheduler tries to satisfy several objec-
tives, such as fast response time, high throughput, fairness,
etc., by ranking processes according to their priority and
changing it dynamically. The lower the priority value, the
higher the process rank. At a higher level, the entire CPU
time is divided into epochs. Every process is also assigned
a specific timeslice, which is a measure of the maximum
CPU time that a process is allowed to run in an epoch.
This scheduler, however, focuses solely on performance and
is not energy- or thermal-aware. To make the scheduling
policy thermal-aware, we dynamically adjust process prior-
ities based on the following approach. When the overall
temperature exceeds a pre-defined thermal trigger thresh-
old Tsw for software DTM, we change the process priorities
based on their estimated individual temperatures Tprocess.
If Tprocess for a particular process is higher than Tsw, its
priority value is increased (rank is lowered) and vice-versa.
We define max penalty to be the maximum possible change
in priority. The following pseudo-code shows our thermal-
aware priority assignment policy.

for processi do
penalty ratio← (Tprocessi

− Tsw) / (Tmax − Tsw)
if penalty ratio > 1 then

penalty ratio← 1
penalty← penalty ratio×max penalty
priority← old priority + penalty

Using this algorithm, processes, whose Tprocess exceeds
the software trigger temperature Tsw, are qualified as “hot”
and their priority value is increased (decreasing their rank)
whereas processes, whose Tprocess is less than Tsw, have their
priorities decreased, thereby boosting their rank. The pri-
ority of a process remains unchanged if Tprocess is equal to
Tsw.

In addition to priority adjustment, we also implemented
thermal-aware timeslice adjustment. In Linux, process times-
lices are calculated based on their static priorities (nice val-
ues). Instead, we calculate timeslices based on the dynamic
priority of a process. Since processes are already assigned
priorities in a thermal-aware fashion, this makes our times-
lice assignment thermal-aware, assigning shorter timeslices
to “hot” processes and longer ones to “cold” processes.

4.4 Reactive hardware-directed DTM
While software-directed DTM has a low performance im-

pact and can be application-aware, it may not be able to
avoid thermal emergencies completely. In such cases, more
aggressive hardware techniques, such as clock gating, can
be employed to lower the overall temperature sharply by
drastically decreasing the total power consumption.

Pentium 4 supports an elaborate clock gating mechanism
which can be configured by software [1]. The OS can pro-
gram the clock modulation MSR to throttle the processor
clock in dicrete steps ranging from 12.5% to 87.5% throt-
tling. When the overall temperature crosses a pre-defined
hardware thermal trigger threshold Thw, we use this feature
of Pentium 4 reactively to manage the overall power con-
sumption and hence temperature. This technique is engaged
in three incremental steps, progressively increasing the clock
throttling percentage from 12.5% to 25% and finally to 50%
with increasing temperature values. The software overhead
involved in engaging and disengaging this technique is min-
imal because it only entails writing values to a specific MSR
which can be done in a few processor clock cycles. The low
overhead allows an extremely fine-grained control where
clock gating is engaged or disengaged (based on the overall
temperature) at the granularity of a context switch, thereby
not using it for longer than is needed, and hence minimiz-
ing its performance impact. While in this work, we use
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hardware DTM only in the event of thermal emergencies,
proactive use of both hardware and software DTM will be
studied in the future.

The Pentium 4 processor supports another on-die ther-
mal diode [2] which is different from the one we used while
developing our thermal model. This diode acts as a catas-
trophic shutdown detector, triggering automatic processor
shut down when the temperature becomes alarmingly high
(around 135oC), to prevent burn-out. This feature comple-
ments our proposed DTM technique and acts as the ultimate
fail-safe mechanism.
4.5 Changes for SMT

The Pentium 4 processor used in our setup supports two
logical processors per physical processor in an SMT envi-
ronment [12]. Most of the performance counters in Pentium
4 are thread-specific (TS) and can be configured to count
events occurring on only specific logical processors. How-
ever, some counters, which are thread-independent (TI),
cannot be configured to obtain counts for individual logi-
cal processors [1]. Moreover, there is only one set of coun-
ters for every hardware event which makes it impossible to
simultaneously count events for two processes running on
different logical processors. Therefore, for TI events, we
assume equal counts for both logical processors while TS
counters are time-multiplexed between the two logical pro-
cessors. Because of these limitations, the error in estimat-
ing the temperature Tprocess for each process, as well as
Toverall, is increased as compared to the uniprocessor case.
Note though that processes running on both logical proces-
sors contribute to Toverall because they actually run on the
same physical processor.

5. EVALUATION
In this section, we evaluate the performance of our pro-

posed hybrid DTM policy using a number of integer and
floating-point benchmarks from the SPEC2000 benchmark
suite. These benchmarks were compiled using gcc-3.4.2 us-
ing “-O3 -fomit-frame-pointer” flags. The two major metrics
to consider while evaluating a DTM strategy are: effective-
ness in eliminating all thermal emergencies to ensure safe
on-line operation and the execution time overhead. We an-
alyze HybDTM based on these two metrics. For comparison,
we consider the following alternative DTM strategies:
• Software-based DTM (SDTM): SDTM uses the

two proposed software mechanisms, thermal-aware pri-
ority management and timeslice management, to man-
age overall temperature. This scheme helps determine
if using only software-based mechanisms can success-
fully avert all thermal emergencies. We also analyze
the performance impact of using this scheme.
• Hardware-based DTM (HDTM): This strategy

uses a fine-grained clock gating approach to manage
temperature. In this technique, as temperature rises,
the clock gating ratio is increased incrementally from
0 to 12.5%, 25% and finally 50%. This scheme helps
identify the performance impact of using only hardware-
based DTM.

In our experiments, we set Tmax, which is the maximum
allowable processor temperature depending on the thermal
budget and cooling solution, to 65oC. We set Tsw, the
thermal trigger threshold for proactively invoking software
DTM, to 60oC and Thw, the threshold for invoking hard-
ware DTM, to 62oC. The processor clock is throttled in
incremental steps when the temperature reaches Thw, i.e.,
12.5% throttling at Thw, 25% at Thw+1 and 50% at Thw+2.
The temperature values chosen were low because of the ef-
ficient cooling mechanism in our system.

5.1 Uniprocessor results
We analyze the effectiveness of HybDTM for the unipro-

cessor configuration by running several SPEC2000 bench-
marks and comparing it with the alternative DTM strategies
proposed above. To analyze the effect of proactive software
techniques in HybDTM, we also run memory, a moderately
energy-efficient microbenchmark, in parallel with SPEC2000
benchmarks. The memory microbenchmark traverses a large
integer array in a distributed fashion and stores values at
different locations within the array. Hence, it uses the pro-
cessor’s address generation unit but overall is designed to be

a memory system intensive benchmark. The peak processor
temperature reached when running the memory microbench-
mark alone is 55oC.
Thermal management: Table 1 shows the peak tempera-
ture values for gzip, vpr and twolf from the SPECint bench-
mark suite and wupwise and applu from the SPECfp suite for
both HybDTM and without any DTM. First, we can see that
HybDTM is successfully able to manage the peak temper-
ature below the maximum allowed temperature, Tmax, and
hence guarantee thermal safety in all cases. For gzip, vpr and
applu, the difference between the observed peak temperature
and Tmax is less than or equal to 1oC, which implies that
the peak temperature exceeds the hardware thermal trigger
temperature Thw. Hence, both software priority/timeslice
management as well as reactive hardware clock gating were
needed to guarantee thermal safety. Moreover, all levels of
clock gating were active. For twolf, the peak temperature
is below Thw, which implies that proactive software mech-
anisms were sufficient to avert thermal emergencies. For
wupwise, the peak temperature is 2oC below Tmax, hence
both proactive and reactive techniques were needed to man-
age temperature, but only two out of the three clock gating
levels were active.

Fig. 4 shows the average CPU utilization for the different
benchmarks. It can be seen that in the absence of DTM,
both memory and the SPEC benchmarks utilize around 50%
of the CPU. However, in the case of HybDTM, thermal-
aware scheduling reduces the CPU utilization of the rela-
tively “hot” SPEC benchmark, while increasing the CPU
utilization of memory, as it taxes the CPU less.

gzip

memory

gzip

memory

vpr

memory

vpr

memory

twolf

memory

twolf

memory

wupwise

memory

wupwise

memory

applu

memory

applu

memory

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

no
dt

m

hy
bd

tm

no
dt

m

hy
bd

tm

no
dt

m

hy
bd

tm

no
dt

m

hy
bd

tm

no
dt

m

hy
bd

tm

Figure 4: Relative CPU utilization
Comparative study: To isolate the impact of both the
hybrid nature of HybDTM and its fine-grained policy, we
compare the effectiveness and performance impact of Hyb-
DTM with both SDTM and HDTM.

In our experiments, we found that SDTM alone was un-
able to manage the peak temperature below Tmax. Hence,
the use of a software-only approach to guarantee thermal
safety is insufficient and hardware mechanisms are needed
to deal with thermal emergencies. HDTM, on the other
hand, was able to successfully guarantee thermal safety.

Fig. 5 shows the performance impact in terms of rela-
tive execution time overhead of HybDTM and HDTM. The
execution times are normalized to the time taken by a sin-
gle run of the benchmark in the absence of any DTM pol-
icy. We see that HybDTM has a lower performance impact
as compared to HDTM in all cases. Note that the execu-
tion time overhead shown is that of the SPEC benchmark
with memory running in the background. The average ex-
ecution time overhead for HybDTM compared to the case
when no DTM technique is employed is 9.9%, with the max-
imum being 16.3%. The corresponding overhead for HDTM
is 20.4% (29.5% maximum). The average improvement of
HybDTM over HDTM is 9.9%, with the maximum being
16.9%, which occurs in the case of applu. The performance
impact for twolf is low, because as mentioned earlier, only
low overhead proactive software techniques were sufficient
to guarantee thermal safety.
Analysis: Fig. 6 shows the variation in the processor tem-
perature with time for gzip running along with memory.
From the figure, the effects of hardware vs. software DTM
can be clearly seen. Due to the proactive use of prior-
ity/timeslice adjustment, the rank assigned to the “hot”
gzip benchmark is low and, hence, the initial temperature
rise is not very steep. Moreover, as the temperature rises
above Thw and clock gating is enabled, the temperature
drops sharply. The subsequent rise is again very gradual
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Table 1: Peak temperature for SPEC2000 benchmarks
Uniprocessor configuration gzip+memory vpr+memory twolf+memory wupwise+memory applu+memory

Without DTM 69.5 68.5 66.5 67.5 68.5
HybDTM 64.5 64.0 61.5 63.0 64.5

SMT configuration twolf+wupwise gzip+vpr vpr+equake gcc+swim art+equake
Without DTM 73.0 75.0 72.5 71.5 71.5

HybDTM 63.5 64.5 64.5 64.0 64.5
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Figure 5: Relative execution time for different DTM
policies
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Figure 6: Temperature variation of gzip+memory

because of the lower rank of gzip compared to the rela-
tively “cold” memory. Therefore, clock gating is not en-
abled very often. Furthermore, as explained in Section 4.4,
we use an extremely fine-grained control for clock gating
by engaging/disengaging it at the granularity of every con-
text switch. This ensures that the clock is throttled only as
long as needed, thereby minimizing its performance impact.
Hence, by taking advantage of low overhead software mecha-
nisms and using hardware mechanisms as a fail-safe backup,
HybDTM is able to minimize the performance impact while
ensuring thermal safety.

5.2 SMT results
Table 1 shows the peak temperature of several combi-

nations of SPECint and SPECfp benchmarks running si-
multaneously in a multi-threaded environment. The trigger
thresholds, Tsw and Thw, as well as the maximum allowed
temperature, Tmax, are the same as in the case of the unipro-
cessor configuration. Again, it can be seen that the peak
temperature with HybDTM is always below Tmax, which
implies that HybDTM is able to guarantee safe on-line op-
eration. In all cases, hardware clock gating was required in
addition to priority/timeslice management to manage the
overall temperature.

Fig. 7 shows the normalized execution times for the dif-
ferent benchmark pairs. Again, HybDTM performs better
than HDTM in all cases. However, the proactive software
technique is not very effective here because all SPEC bench-
marks exhibit high thermal contributions to the overall tem-
perature and hence are “hot”. Therefore, priority/timeslice
management lowers the rank of both benchmarks in each
pair, although by different amounts. Due to this, the rela-
tive improvement in performance impact of HybDTM over
HDTM is not high and clock gating is used frequently in
both cases to manage the peak temperature.

6. CONCLUSION
As microprocessor power densities and temperatures in-

crease, the key challenge in DTM research is to guaran-
tee thermal safety while minimizing the performance im-
pact. In this paper, we presented a low overhead regression-
based processor thermal model that directly uses hardware
performance counters to accurately characterize the ther-
mal impact of individual applications at run-time while at
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Figure 7: Relative execution time in the SMT case
the same time taking into account system-level thermal in-
teractions between different components like the processor
and memory. Using this model, we proposed and evaluated
HybDTM, a novel DTM mechanism which uses a hybrid
of hardware and software techniques to manage the over-
all temperature while minimizing the performance impact.
We hope to extend this work by developing a framework
for more fine-grained DTM, considering the interactions be-
tween a number of hardware and software DTM techniques,
such as, DVS, fetch toggling, task migration, etc., in high-
performance systems. We see this work forming the founda-
tion for low overhead system-level DTM solutions.
7. REFERENCES

[1] IA-32 Intel architecture software developer’s manual, Vol. 3:
System programming guide. http://developer.intel.com/
design/pentium4/manuals/245472.htm

[2] Intel Pentium 4 processor in the 478-pin package thermal
design guidelines. http://developer.intel.com/design/
pentium4/guides/249889.htm.

[3] Mobile Intel Pentium 4 processor – M datasaheet.
http://www.intel.com.

[4] J. Baek et al., “Thermal characterization of high speed DDR
devices in system environments,” in Proc. Ninth Annual IEEE
Semiconductor Thermal Measurement and Management
Symp., Mar. 2003.

[5] F. Bellosa et al., “Event-driven energy accounting for dynamic
thermal management,” in Proc. Wkshp. Compilers and
Operating Systems for Low Power, Sept. 2003.

[6] D. Brooks et al., “Dynamic thermal management for
high-performance microprocessors,” in Proc. Int. Symp. High
Performance Computer Architecture, Jan. 2001, pp. 171–182.

[7] X. Fan et al., “Memory controller policies for DRAM power
management,” in Proc. IEEE Symp. Low Power Electronics,
Aug. 2001.

[8] G. Hilton et al., “The microarchitecture of the Pentium 4
processor,” Intel Technology Journal, Feb. 2001.

[9] M. Huang et al., “A framework for dynamic energy efficiency
and temperature management,” in Proc. Int. Symp.
Microarchitecture, Dec. 2000, pp. 202–213.

[10] C. Isci et al., “Run-time power monitoring in high-end
processors: Methodology and empirical data,” in Proc. Int.
Symp. Microarchitecture, Dec. 2003.

[11] J. Janzen, “Calculating memory system power for DDR
SDRAM,” Designline, vol. 10, no. 2, 2001.

[12] D. Koufaty et al., “Hyperthreading technology in the netburst
microarchitecture,” IEEE Micro, vol. 23, no. 2, pp. 56–65,
Mar. 2003.

[13] K.-J. Lee et al., “Using performance counters for runtime
temperature sensing in high-performance processors,” in Proc.
Wkshp. High-Performance Power-Aware Computing, Apr.
2005.

[14] L. Shang, L.-S. Peh, A. Kumar and N. K. Jha, “Thermal
modeling, characterization and management of on-chip
networks,” in Proc. Int. Symp. Microarchitecture, Dec. 2004.

[15] K. Skadron, “Hybrid architectural dynamic thermal
management,” in Proc. Design Automation and Test in
Europe Conf., Feb. 2004, pp. 10–15.

[16] K. Skadron et al., “Temperature-aware microarchitecture,” in
Proc. Int. Symp. Computer Architecture, June 2003, pp. 1–12.

[17] B. Sprunt, “Pentium 4 performance-monitoring features,”
IEEE Micro, vol. 22, no. 4, pp. 72–82, Jul./Aug. 2002.

[18] A. Weissel et al., “Dynamic thermal management for
distributed systems,” in Proc. Wkshp. Temperature-Aware
Computer Systems, June 2004.

553


