A Comprehensive High-level Synthesis System for
Control-Flow Intensive Behaviors:

W. Wang', T. K. Tanf, J. Luof, Y. Feif, L. Shang', K. S. Valleriof, L. Zhong/,
A. Raghunathan* and N. K. Jhat

7 Dept. of Electrical Eng., Princeton University, NJ 08544
I NEC, C&C Research Labs, Princeton, NJ 08540

ABSTRACT

In this paper, we describe a comprehensive high-level synthe-
sis system for control-flow intensive as well as data-dominated
behaviors. We propose a new control-data flow graph model
to preserve the parallelism inherent in the application, as
well as to facilitate high-level synthesis. Our algorithm,
which is based on an iterative improvement strategy, per-
forms clock selection, scheduling, module selection, resource
allocation and assignment simultaneously to fully derive the
benefits of design space exploration at the behavior level.
The system can be used to optimize area, power or energy,
by selecting the cost function accordingly. Experimental
results show that for energy-optimized designs, energy is re-
duced by up to 79.4% (an average of 42.2%), with an av-
erage of 24.8% area overhead, compared to area-optimized
designs. For power-optimized designs, power is reduced by
up to 70.8% (an average of 56.7%), with an average of 25.2%
area overhead, compared to area-optimized designs. No Vg
scaling is performed to obtain the above results.

Categories & Subject Descriptors
B.5.1: [Design]: Control design, Data-path design

General Terms

Design, Performance

Keywords

High-level Synthesis, Low Power Design, Control-flow Inten-
sive Behaviors

1. INTRODUCTION

High-level synthesis converts a behavioral description into
an optimized register-transfer level (RTL) description. Typ-
ical tasks in high-level synthesis include scheduling, resource
allocation, module binding, module selection, register bind-
ing and clock selection. The fact that these tasks interact

*This work was supported in part by Alternative System Con-
cepts under an SBIR contract from Army CECOM and in part
by DARPA under contract no. DAABO07-00-C-L516.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GLVLS' 03, April 28-29, 2003, Washington, DC, USA.

Copyright 2003 ACM 1-58113-677-3/03/0006 ...$5.00.

with each other makes it necessary that their effects be con-
sidered simultaneously, in order to fully explore the benefits
of the design space at the behavior level.

1.1 Related Work

Most previous work on high-level synthesis tackles data-
dominated behaviors [1, 2], normally found in digital signal
processing and image processing applications. These behav-
iors are characterized by a predominance of arithmetic oper-
ations and an absence of control flow. Control-flow intensive
behaviors, which may have a large number of nested loops
and conditionals, are frequently encountered in network-
centric systems. Therefore, a high-level synthesis system
that can handle control-flow intensive behaviors is also re-
quired. In [3] and [4], timing analysis and loop-directed

scheduling are presented to drive high-level synthesis of control-

flow intensive circuits. A number of efficient algorithms are
presented in [5] for such behaviors. However, these tech-
niques are limited to performance and area optimization,
without consideration to power and energy. One work for
reducing power consumption in control-flow intensive appli-
cations is given in [6], where a profile-driven high-level syn-
thesis technique for low power is presented. This method,
however, is limited to simple conditional constructs and can-
not handle multiple nested loops and branches. In [7], a
high-level synthesis algorithm for control-flow intensive be-
haviors is presented. However, it does not tackle high-level
synthesis tasks such as clock selection and memory binding.

1.2 Paper Overview and Contributions

In this paper, we propose a comprehensive high-level syn-
thesis system to perform the high-level synthesis tasks con-
currently to better optimize energy, power, or area, by se-
lecting the cost function appropriately. We take a control-
data flow graph (CDFQG) as an input to our high-level syn-
thesis system. Loop optimizations, such as loop unrolling,
may be performed on the CDFG. The scheduling algorithm,
which supports concurrent loop optimization and multicy-
cling under resource constraints, is able to generate a sched-
ule that best preserves the parallelism in the input behav-
ior. We obtain switched capacitance matrices [1], which are
used later to efficiently estimate the power/energy consump-
tion of the datapath by simulating the state transition graph
(STQG) representing the schedule. Starting with an initial ar-
chitecture, the synthesis algorithm iteratively improves the
architecture by performing various high-level synthesis tasks
concurrently. The iterative improvement scheme is imple-

mented by generating and applying multiple sequences of
moves to the initial architecture. The moves employed in our
high-level synthesis system include module selection, mod-
ule sharing and register sharing. The most efficient moves at
any given point in synthesis are selected and implemented.
After synthesis, Verilog descriptions of the most efficient
datapath and controller are generated as the output of our
system, which can be fed to lower level tools, such as a logic
synthesis tool, to further optimize the design.

2. BEHAVIORAL REPRESENTATION

Two different models have been proposed to describe control-
flow intensive behaviors: control-flow graph (CFG) and CDFG.

While the CFG model is well suited for capturing execu-
tion of instructions on a general-purpose uniprocessor, it has
been shown to be inadequate in exploiting the parallelism
inherent in typical control-flow intensive applications. Ex-
isting CDFG models [7, 8] are successful in preserving the
parallelism in the behavior. However, the implementation
complexity of using such a CDFG is much higher compared
to that of using a CFG. Based on these observations, we
propose our own CDFG model, which is a variation of the
CDFG model proposed in [7] (it introduces some special
nodes). Two types of special nodes are employed in our
system:

e SLP, EIF: An SLP node represents the start of a loop.
It selects between the initial value and the value calcu-
lated from the previous iteration of the loop. An EIF
node represents the end of an if-else branch. It is used
to select the correct value from the two branches, if
and else. Note that one common feature of these two
nodes is that they serve as a “selector” for the vari-
ables. In the datapath, both SLP and EIF nodes are
implemented by multiplexer(s).

e BLP, ELP: A BLP node sends the values of variables
computed in the loop, which will be used in the next
iteration, back to the SLP node. An ELP node rep-
resents the end of the loop. All the loop variables,
which are used outside the loop, have to pass through
an ELP node, before they are fed to operations outside
the loop. This ensures correct operation execution se-
quence related to the loop. Note that BLP and ELP
nodes do not perform any functionality, and thus, in
the datapath, they are implemented as wires.

Our CDFG model also supports memory operations, e.g.,
load (I1d) and store (st). A special control edge, called SC,
is added between load (store) and the corresponding store
(load), if necessary, to ensure correct memory access se-
quence.

With the above special nodes, high-level synthesis tasks
can be performed in a much more efficient way. For example,
the tool can easily recognize the start/end of a loop, as well
as the range of the loop, with help from SLP, BLP and ELP
nodes. Without them, to perform the same set of tasks,
complicated techniques like pattern matching may need to
be employed.

3. HIGH-LEVEL SYNTHESIS

In this section, we present the overall methodology and
algorithmic details of our high-level synthesis system.

Parse CDFG
Preprocess CDFG
Initial architecture

Generate
moves
Select resource T
allocation
Re-
- schedule
Clock selection l
Estimate
cost

Store
solution

Get best
sequence
of moves

l

Evaluate

Save current clock
and resource
allocation

N
Generate datapath

Generate
controller

Output RTL circuit
(@

Figure 1: An overview of our high-level synthesis
algorithm: (a) overall algorithm flow, and (b) itera-
tive improvement algorithm

Figure 1(a) presents the overall flow of our high-level syn-
thesis system. The first few steps are quite straightforward.
The input behavioral description (CDFG) is parsed and read
into the memory. The CDFG is preprocessed by unrolling
the loops in the CDFG, whenever necessary. An initial ar-
chitecture is then obtained, assuming infinite number of re-
sources for the behavior. The following steps present the
outline of our synthesis algorithm, which is described in
more detail in Section 3.2. The outside loop is for resource
allocation. For each resource allocation, multiple clock pe-
riods are selected and evaluated. Therefore, various promis-
ing combinations of resource allocation and clock periods
are selected and used in the iterative improvement step. If
the resource allocation is fixed in the form of a resource con-
straint, as may be the case for control-flow intensive behav-
iors, the algorithm just works within this constraint. The
cost function is evaluated and the combination of resource
allocation and clock period with the best cost is saved. Fi-
nally, the datapath as well as the controller are generated
and the RTL circuit output in Verilog.

3.1 Scheduling

The schedule is represented as an STG. The scheduler
takes a CDFG as an input and generates an STG as the
scheduling result. An STG is a directed cyclic graph con-
sisting of nodes and arcs representing states and transi-
tions between states, respectively. Note that multicycling
and resource constraints are supported in our scheduling al-
gorithm. Figure 2 gives its pseudo-code. The inputs to
the algorithm are a CDFG, G, and the resource constraint,
RES. The scheduling result is stored in the STG. A queue,
State_queue, is employed to hold the states that need to
be processed. An array, indegrees, is used to represent the
number of input dependencies for each operation. For ex-
ample, suppose operation, OP, has two input edges, inl
and ¢n2, and no control edges. Initially, its indegree is 2.
If the operation, whose output edge is inl, has been sched-
uled, implying availability of inl, OP’s indegree is reduced
to 1. If both inl and in2 are available, its indegree is re-
duced to 0, indicating that OP is ready to be scheduled.
In our scheduling algorithm, we first identify the initial op-
erations, whose initial indegrees are 0. The initial oper-
ations are scheduled in the first state, S0, which is put
into State_queue, as well as the STG. Next, we dequeue
State_queue into state. The potential branches out of state
are explored to find the corresponding successors. Under
each branch, we mark the output edges of the operations,
which finish their execution in state, as ready, and update
indegrees. FIND_SCHED_OP() selects the schedulable opera-
tions, whose input edges are available and control conditions
are satisfied under the branch, and puts them in Oplist.
Note that in function FIND_SCHED_OP(), multicycling and
the resource constraint are also taken into consideration.
The schedulable operations are selected in a way that the
resource constraint is not violated, and the continuity of
multicycle operations is ensured. If Oplist is not empty,
i.e., there are successors in this branch, a new_state and
corresponding arcs are generated. This process is repeated
until the State_queue is empty.

3.2 Synthesis Algorithm

In this section, we present more details of the synthesis
algorithm. In our high-level synthesis system, the cost func-
tion can be either area, power, or energy. The algorithm
performs resource allocation, clock selection, module bind-
ing, register binding, etc. Iterative improvement, as shown
in Figure 1(b), is at the core of our synthesis algorithm.

We iteratively improve the initial RTL architecture cost
by generating moves during the synthesis process. The iter-
ative improvement algorithm is executed in multiple passes
until there is no improvement in the cost. In each pass, a
sequence of moves is generated. Three types of moves have
been implemented in our synthesis system: module selec-
tion, module sharing, and register sharing. After each move,
we reschedule the behavior, if necessary, and estimate the
cost. If it improves the cost the most, the algorithm saves
this move. In each pass, it explores the best sequence of
moves and evaluates the cost by applying the moves. A new
pass begins whenever the cost is reduced in the current pass.
This process is repeated until no improvement in the cost
can be achieved. Note that individual moves in the sequence
may actually degrade the cost, allowing better moves to be
applicable later as a result. This helps it escape local min-
ima. Here, the cost can be area, power, or energy or their

GEN_STG_FROM_CDFG (G, RES) {
STG . INITIALIZE();
State_queue . INITIALIZE ();
indegrees . INITIALIZE ();
Oplist «— FIND_SCHED_OP (G, indegrees, RES);
S0 «— GENERATE_NEW_STATE (Oplist);
State_queue . ENQUEUE (S0);
STG . APPEND (S0);
while (State_queue . NOT_EMPTY()) {
state «— (State_queue . DEQUEUE());
branches < FIND_BRANCHES(state);
FOR_EACH _branch(branches) {
indegrees . UPDATE_INDEGREES (G, state, branch);
Oplist < FIND_SCHED_OP (G, indegrees, RES);
if (Oplist . 1sS.LEMPTY()) {
continue; (*no successor for this branch*)
}

new_state < FIND_STATE (Oplist);

if (new_state) { (*existing state*)

STG .GENERATE_NEW_ARC (state, new_state);

} else { (*new_state is NULL, gen. a new state*)
new_state < GENERATE_NEW_STATE(Oplist);
STG . GENERATE_NEW_ARC (state, new_state);
State_queue . ENQUEUE (new_state);

}

}

return STG;

}

Figure 2: Pseudo-code of our scheduling algorithm

combinations. The complexity of the algorithm is related to
the number of passes, the number of moves implemented, as
well as the number of different clock steps. With a larger
number of passes, moves and clock steps, we can achieve bet-
ter results. However, the total execution time will increase
accordingly. Our experiments show that, with five passes,
four moves per pass, and ten clock steps, we can achieve
close to optimal results with acceptable CPU time.

4. EXPERIMENTAL RESULTS

The methods described in this paper were implemented
in the C+4 programming language in a modular fashion
so that it is easy to incorporate new techniques into our
system. The input to our high-level synthesis system is a
CDFG and an RTL design library. The output is an RTL
circuit described in Verilog. Though our high-level synthesis
system is targeted at control-flow intensive behaviors, it is
also applicable to data-dominated behaviors. We applied
our system to several behavioral benchmarks, consisting of
both types of behavior.

The results obtained are summarized in Tables 1 and 2.
In these tables, major column Ezample contains the name
of the behavior. Major columns Area-optimized, Power-
optimized and Energy-optimized represent, respectively, area-
optimized, power-optimized, and energy-optimized designs.
Columns A, P, T, F represent area, power, circuit execution
time, and energy, respectively. Column A.Q. represents the
area overhead incurred by our technique. Columns E.R.

Table 1: Comparison of energy-optimized and area-optimized circuits

Example Area-optimized Energy-optimized

A (um?) | P (mW) | T (us) | E (nJ) || A (pm?) | P (mW) | T (us) | E (nJ) || A.O. (%) | E.R. (%)
Paulin 60,014 0.550 513.470 | 282.11 95,134 0.370 484.129 | 179.13 58.5 36.6
Conloop 101,158 0.044 125.497 5.52 101,454 0.024 147.126 3.53 0.3 32.5
GCD 51,948 0.023 165.309 3.80 53,724 0.007 194.481 1.36 34 64.2
Elliptic 127,768 0.120 34.845 4.18 166,100 0.041 20.902 0.86 30.0 79.4
Forloop 43,308 0.175 2444.850 | 427.85 59,500 0.100 3200.530 | 320.05 37.4 25.2
Nestloop 65,388 0.048 3717.080 | 178.42 77,792 0.023 6595.860 | 151.70 19.0 15.0

Table 2: Comparison of power-optimized and area-optimized circuits

Example Area-optimized Power-optimized

A (pm?) | P (mW) | T (pus) | E (nJ) || A (um?) | P (mW) | T (us) | E (nJ) || A.O. (%) | P.R. (%)
Paulin 60,014 0.550 513.470 | 282.11 95,134 0.350 513.470 | 179.71 58.5 36.7
Conloop 101,158 0.044 125.497 5.52 101,454 0.022 164.619 3.62 0.3 50.8
GCD 51,948 0.023 165.309 3.80 53,724 0.007 196.777 1.38 34 69.6
Elliptic 127,768 0.120 34.845 4.18 166,100 0.035 28.112 0.98 30.0 70.8
Forloop 43,308 0.175 2444.850 | 427.85 60,604 0.070 4534.090 | 317.39 40.0 60.0
Nestloop 65,388 0.048 3717.080 | 178.42 77,792 0.023 6699.550 | 154.10 19.0 52.1

and P.R. represent the reduction in energy and power, re-
spectively. Of the benchmarks, four are control-flow inten-
sive behaviors. Forloop represents a behavior with a for
loop in it. Conloop represents a behavior which has concur-
rent loops. Nestloop describes a behavior which has nested
loops. Greatest Common Divisor (GCD) is a well known
control-flow intensive behavioral benchmark. Elliptic is
a fifth-order Elliptic wave filter. Paulin is another data-
dominated behavior from the literature.

Table 1 presents comparisons between area-optimized and
energy-optimized designs. Energy consumption is calculated
as the product of power consumption and circuit execution
time. The exact number of cycles to execute the behav-
ior can be obtained from STG simulation. After select-
ing the clock period, we can obtain the circuit execution
time by multiplying the number of cycles with the clock pe-
riod. Compared to area-optimized designs, energy-optimized
designs consume up to 79.4% (average of 42.2%) less en-
ergy, at the expense of 24.8% average area overhead. Ta-
ble 2 presents comparisons for area-optimized designs and
power-optimized designs. Compared to area-optimized de-
signs, power-optimized designs consume up to 70.8% (aver-
age of 56.7%) less power, at the expense of 25.2% average
area overhead. The experiments were performed on a 733
MHz Pentium-III PC with 512MB of memory, and took sev-
eral seconds to several minutes of CPU time.

5. CONCLUSIONS

We presented an efficient iterative-improvement based high-
level synthesis algorithm to perform clock selection, schedul-
ing, module selection, module sharing and register sharing
for control-flow intensive as well as data-dominated behav-
ioral descriptions in order to minimize power, energy or area.
Unlike most previous work, we also consider the interac-
tion among these tasks in order to better explore the de-
sign space. We have implemented the algorithm, and pre-
sented experimental results to demonstrate its effectiveness.

Up to 79.4% (70.8%) reduction in energy (power) can been
achieved by employing our high-level synthesis system, with-
out the aid of any supply voltage scaling.

6. REFERENCES

[1] A. Raghunathan and N. K. Jha, “SCALP: An iterative
improvement based low-power data path synthesis algo-
rithm,” IEEE Trans. Computer-Aided Design, vol. 16,
pp. 12601277, Nov. 1997.

[2] J. M. Chang and M. Pedram, “Register allocation and
binding for low power,” in Proc. Design Automation
Conf., pp. 29-35, June 1995.

[3] G. Lakshminarayana, K. S. Khouri, and N. K. Jha,
“Wavesched: A novel scheduling technique for control-
flow intensive behavioral descriptions,” IEEE Trans.
Computer-Aided Design, vol. 18, May 1999.

[4] S. Bhattacharya, S. Dey, and F. Brglez, “Performance
analysis and optimization of schedules for conditional
and loop-intensive specifications,” in Proc. Design Au-
tomation Conf., pp. 491-496, June 1994.

[5] S. Amellal and B. Kaminska, “Functional synthesis of
digital systems with TASS,” IFEE Trans. Computer-
Aided Design, vol. 13, pp. 537-552, May 1994.

[6] N. Kumar, S. Katkoori, L. Rader, and R. Vemuri,
“Profile-driven behavioral synthesis for low-power VLSI
systems,” IEEE Design & Test Comput. Mag., pp. 70—
84, Sept. 1995.

[7] K. S. Khouri, G. Lakshminarayana, and N. K. Jha,
“High-level synthesis of low-power control-flow inten-
sive circuits,” IEEE Trans. Computer-Aided Design,
vol. 18, pp. 1715-1729, Dec. 1999.

[8] R. A. Bergamaschi, A. Raje, I. Nair, and L. Trevillyan,
“Control-flow versus data-flow scheduling: Combining
both approaches in an adaptive scheduling system,”
IEEE Trans. VLSI Systems, vol. 8, pp. 82-100, Mar.
1997.

