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ABSTRACT
NATURE is a recently developed hybrid nano/CMOS recon-
figurable architecture. It consists of complementary metal-
oxide semiconductor (CMOS) reconfigurable logic and inter-
connect fabric, and carbon nanotube-based non-volatile on-
chip configuration memory. Compared to existing CMOS-
based field-programmable gate arrays (FPGAs), NATURE in-
creases logic density by more than an order of magnitude and
offers cycle-by-cycle run-time reconfiguration capability. As
opposed to some other recently proposed hybrid nano/CMOS
designs, which mostly rely on the not-yet-mature self-assembly
fabrication process, NATURE is compatible with mainstream
photolithography fabrication techniques. Thus, NATURE of-
fers a commercially feasible technology with high performance,
superior integration density, and excellent run-time flexibility.

In this paper, we present an integrated design and opti-
mization platform for NATURE, called NanoMap. Given an
input design specified in register-transfer level (RTL) and/or
gate-level VHDL, NanoMap optimizes and implements the
design on NATURE through logic mapping, temporal clus-
tering, placement, and routing. NATURE offers a highly-
efficient computation model, called temporal logic folding.
A logic circuit can be arbitrarily folded into a sequence of
logic stages, which temporally share and execute on the same
hardware resource using fine-grain run-time reconfiguration.
To effectively leverage this feature, we propose and develop
novel mapping techniques which can automatically explore
and identify the best temporal logic folding configuration,
targeting area, delay or area-delay product. It uses a force-
directed scheduling technique to optimize and balance re-
source usage across different folding cycles. It provides sig-
nificant design flexibility in performing area-delay tradeoffs
under various user-specified constraints. Experimental re-
sults demonstrate that NanoMap can judiciously trade off
area and delay, and effectively exploit the different features
of NATURE.
Categories and Subject Descriptors: B.5.2 [Design Aids]:
Automatic synthesis
General Terms: Algorithms, design
Keywords: dynamic reconfiguration, logic folding, logic map-
ping, NATURE, NRAM

1. INTRODUCTION
Since CMOS technology is approaching its physical limits,

tremendous efforts are being devoted to nanoscale device and
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fabrication research [1, 2]. However, since the end of CMOS
is still 10-15 years away [3], hybrid nano/CMOS systems will
become increasingly attractive in the next few years.

Recent research on reliable nanoscale circuits and archi-
tectures has resulted in a variety of nanoelectronic and hy-
brid nano/CMOS reconfigurable designs. DeHon proposed a
nanowire-based programmable logic structure [4]. Snider et
al. proposed a defect-tolerant nanoscale fabric using nanowire-
based FETs and reconfigurable switches [5]. Strukov et al.
proposed CMOL, a hybrid nanowire/CMOS reconfigurable ar-
chitecture [6]. These designs demonstrate orders of magnitude
improvement in performance and integration density. How-
ever, they require a self-assembly fabrication process, which
is unlikely to be mature in the near future.

Recently, we proposed a hybrid carbon nanotube/CMOS
reconfigurable architecture, called NATURE [7]. NATURE
can be fabricated using a CMOS-compatible photolithogra-
phy fabrication process. It addresses two primary challenges
in existing CMOS-based FPGAs: logic density and efficiency
of run-time reconfiguration. Existing FPGAs allow only a
limited number of reconfiguration bits to be stored on-chip
because of the area overhead of SRAMs. Since the recon-
figuration latency for accessing off-chip storage can be quite
large, fine-grain (e.g., cycle-by-cycle) dynamic reconfiguration
becomes very difficult [8, 9]. NATURE solves this problem
by using non-volatile nanotube RAMs (NRAMs) as on-chip
reconfiguration storage. NRAM is a universal memory tech-
nology developed by Nantero [10], which is expected to be
considerably denser than DRAM and have similar speed to
SRAM. Using NRAMs, NATURE improves the capacity of
on-chip storage by more than an order of magnitude. Since
the access latency of on-chip storage is small, it opens up the
opportunity to store multiple logic designs in this storage and
invoke different designs through fine-grain dynamic reconfigu-
ration. This leads to an efficient run-time computation model,
called temporal logic folding. A large logic circuit can be
partitioned into a sequence of logic stages and stored in the
on-chip configuration memory. At run-time, stage-by-stage,
the logic circuit can be configured into the same hardware
and executed in different clock cycles. As reported in [7], us-
ing temporal logic folding, logic density can be improved by
more than an order of magnitude. Moreover, due to the non-
volatile property of NRAM, reconfiguration bits can be main-
tained in it even when the power supply is switched off. Since
these bits do not have to be repeatedly loaded from off-chip
memory, this improves the power consumption and security
of the system. There exist reconfigurable architectures, such
as PipeRench [11], which allow later stages of a pipeline to
be executed in the same set of logic blocks that executed an
earlier stage. This can be regarded as coarse-grain temporal
folding. However, such architectures are largely limited to
stream media or DSP applications. NATURE, on the other
hand, can support fine-grain temporal folding and does not
have these application limitations.

In this paper, we present NanoMap, an integrated design
optimization platform for NATURE. NanoMap conducts de-
sign optimization from the RTL down to the physical level.
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Given an input design specified in RTL and/or gate-level
VHDL, NanoMap optimizes and implements the design on
NATURE through logic mapping, temporal clustering, place-
ment, and routing. In the past, numerous design tools have
been proposed for reconfigurable architectures with various
optimization targets, including area/delay minimization and
routability maximization (see [12] for an excellent survey).
Our approach differs fundamentally from previous work by
targeting the design flexibility enabled by fine-grain tempo-
ral logic folding. Given user-specified area/delay constraints,
the mapper can automatically explore and identify the best
logic folding configuration and make appropriate tradeoffs be-
tween circuit delay and area efficiency. It uses a force-directed
scheduling (FDS) technique [13] to balance the resource us-
age across different logic folding cycles. Experimental results
demonstrate its efficacy.

2. BACKGROUND
We next provide some background material.

2.1 NATURE architecture
NATURE contains island-style logic blocks, connected by a

hierarchical reconfigurable interconnect fabric [7]. Each logic
block contains a super-macroblock (SMB) and a local switch
matrix connecting the logic block with the interconnect.

2.1.1 SMB architecture
An SMB contains a two-level logic cluster. The first level

consists of a set of macroblocks (MBs). Each MB is composed
of a set of logic elements (LEs). Multiplexers (low-latency re-
configurable crossbars) are used to form local inter-MB (inter-
LE) connections. In NATURE, LE is the atomic functional
element. It contains a look-up table (LUT) and flip-flops.
Each m-input LUT can realize any m-variable Boolean func-
tion. Flip-flops are used to hold computation results used by
subsequent cycles.

2.1.2 Support for reconfiguration
NATURE uses NRAMs as on-chip configuration storage.

Each individual logic or interconnect element is associated
with a k-set NRAM storage. Therefore, k different logic func-
tions can be realized within the same hardware resource. Dur-
ing run-time reconfiguration, reconfiguration bits are read out
of NRAMs sequentially, controlled by a counter, and placed
into SRAM cells to configure the LEs and switches. A detailed
layout and SPICE simulation show that a 16-set NRAM stor-
age introduces 10.6% area overhead with 160ps on-chip re-
configuration time, i.e., the access latency of on-chip NRAM.
Under this setup, the logic density is improved by 14X on an
average.

2.2 Temporal logic folding
Logic folding enables the realization of different Boolean

functions within the same LE in different clock cycles. It can
be performed at different levels of granularity, offering signif-
icant flexibility in mapping circuits to NATURE. A level-p
folding is defined as a setup which requires run-time reconfig-
uration after the execution of p LUT levels. If p is allowed to
be arbitrarily large, it essentially leads to no folding, which is
what traditional reconfigurable architectures implement.

Different folding levels result in different circuit delays and
area efficiency. Given a logic circuit, increasing the folding
level leads to a higher clock period, but smaller cycle count.
The overall circuit delay typically decreases as the folding level
increases. On the other hand, increasing the folding level also
results in much higher resource usage in terms of the number
of LEs. Hence, to achieve a desirable area-delay tradeoff, it it
crucial to choose an appropriate folding level.

3. MOTIVATIONAL EXAMPLE
In this section, we use an example to demonstrate the de-

sign optimization flow of NanoMap. First, we introduce some
concepts for ease of exposition. Given an RTL circuit, the
registers contained in it are first levelized. The logic between
two levels of registers is referred to as a plane. The regis-
ters associated with the plane are called plane registers. The
propagation cycle of a plane is called the plane cycle. Using
temporal logic folding, each plane is further partitioned into
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Figure 1: Illustration of (a) an example RTL circuit,
(b) module partition, and (c) mapping result
folding stages. Resources can be shared among different fold-
ing stages within a plane or across planes. The propagation
cycle of a single folding stage is defined as a folding cycle.
Note that different planes should consist of the same number
of folding stages to guarantee global synchronization. Thus,
the key issue is to determine how many planes are folded to-
gether and the appropriate folding level, i.e., the number of
folding stages in one plane, to achieve the best area-delay
tradeoff under specified design constraints.

Fig. 1(a) shows an example comprising a four-bit controller-
datapath consisting of a single plane. The controller consists
of flip-flops s0 and s1 and LUTs LUT1-LUT4, and the datap-
ath consists of registers reg1-reg3, a ripple-carry adder and a
parallel multiplier, requiring in all 50 LUTs and 14 flip-flops.
The adder consists of eight LUTs with a logic depth, i.e., the
number of LUTs along the critical path, of four. The mul-
tiplier consists of 38 LUTs with a logic depth of seven. The
total logic depth is nine for the plane. Suppose the optimiza-
tion objective is to minimize circuit delay under a total area
constraint of 32 LEs. We assume each LE contains one LUT
and two flip-flops. Hence, 32 LEs equal 32 LUTs along with
64 flip-flops. Since the number of available flip-flops is more
than required, we concentrate on the LUT constraint.

NanoMap uses an iterative optimization flow. As fewer fold-
ing stages lead to better circuit delay, NanoMap starts with
an initial folding level that results in a minimal number of
folding stages and gradually refines it. In the example, the
minimal number of folding stages is equal to the total num-
ber of LUTs divided by the LUT constraint: d 50

32
e = 2. The

initial folding level is then obtained by the maximum logic
depth divided by the number of folding stages, which equals
d 9

2
e = 5.
Next, based on the chosen folding level, the adder and mul-

tiplier are partitioned into a series of connected LUT clusters
in a way that if the folding level is p, then all the LUTs at a
depth less than or equal to p in the module are grouped into
the first cluster, all the LUTs at a depth larger than p but less
than or equal to 2p are grouped into the second cluster, and
so on. The LUT cluster can be considered in its entirety and
contained in one folding stage. By dealing with LUT clusters
instead of a group of single LUTs, the logic mapping proce-
dure can be greatly sped up. Fig. 1(b) shows the partition for
the multiplier using level-5 folding. However, the first LUT
cluster of the multiplier already needs 34 LUTs, exceeding the
area constraint. Thus, the folding level has to be further de-
creased to level-4 in order to guarantee that each LUT cluster
can be accommodated within the available LEs. Correspond-
ingly, the number of folding stages increases to three.

Next, FDS is used to determine the folding cycle assignment
of each LUT and LUT cluster to balance the resource usage
across the three folding stages. If the number of LUTs and
flip-flops required by every folding stage is below the area
constraint, i.e., 32 LEs, the solution is valid and offers the best
possible circuit delay. Otherwise, the folding level is reduced
by one, followed by another round of optimization until the
area constraint is met, assuming it can be satisfied.

Fig. 1(c) shows the mapping result for level-4 folding for
the three folding stages. Note that plane registers, which pro-
vide inputs to the plane, need to exist through all the folding
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stages in the plane. The first folding cycle requires 12 LEs,
eight LEs for mapping the adder. Four-bit registers reg1-reg3
need two LEs each to accommodate their four flip-flops. They
are mapped to the available flip-flops inside the LEs assigned
to the adder. Four LEs are also required for LUT1-LUT4 com-
putation. After storing the LUT computation results, there
are still four flip-flops left inside the four LEs, some of which
can be used to accommodate s0 and s1. Similarly, 32 and
12 LEs are needed for folding cycles 2 and 3, respectively.
Folding cycle 2 requires the maximum number of LEs, since
multiplier cluster 1, depicted as mul : c1, needs 32 LUTs,
which occupy 32 LEs. Hence, the number of LEs for map-
ping this RTL circuit is the maximum required across all the
folding cycles, i.e., 32, which is equal to the area constraint.

Next, clustering, which groups LEs into SMBs, placement
and routing are performed to produce the final layout of the
implementation.

4. NANOMAP: THE OPTIMIZATION FLOW
In this section, we present NanoMap, an integrated de-

sign optimization flow developed for NATURE. As shown in
Fig. 2, given an input design, NanoMap performs logic map-
ping, temporal clustering, temporal placement and routing,
and produces the configuration bitmap for NATURE.
Logic mapping: (Steps 2–6) These steps use an iterative ap-
proach to identify the best folding level based on user-specified
design constraints, optimization objectives, and input circuit
structure. The input network can be obtained with the help
of tools like Synopsys Design Compiler and FlowMap [14].
It uses FDS [13] to assign LUTs and LUT clusters to fold-
ing stages and balance inter-folding stage resource usage, and
produces the LUT network of each temporal folding stage.
Temporal clustering: (Steps 7–8) These steps take the flat-
tened LUT network as input and cluster the LUTs into MBs
and SMBs to minimize the need for global interconnect and
simplify placement and routing. As opposed to the traditional
clustering problem, each hardware resource, i.e., LE, MB, or
SMB, is temporally shared by logic from different temporal
folding stages. Temporal folding necessitates that both intra-
stage and inter-stage data dependencies be jointly considered
during LUT clustering. Note that the folding stages need not
be limited to one plane, i.e., temporal clustering can span
planes. Verifying if the area constraint is met is done after
clustering. If it is met, placement is invoked. Otherwise,
NanoMap returns to the logic mapping step.
Temporal placement: (Steps 9–14) These steps perform
physical placement and minimize the average length of inter-
SMB interconnects. They are implemented on top of an FPGA
place-and-route tool, VPR [15], to provide inter-folding stage
resource sharing. Placement is performed in two steps. First,
a fast placement is used to derive an initial placement. A low-
precision routability and delay analysis is then performed. If
the analysis indicates success, a detailed placement is invoked
to derive the final placement. Otherwise, several attempts are
made to refine the placement and if the analysis still does not
indicate success, NanoMap returns to the logic mapping step.
Routing: (Step 15) This step uses the VPR router to gen-
erate intra-SMB and inter-SMB routing. After routing, the
layout for each folding stage is obtained and the configuration
bitmap generated for each folding cycle.

In the following sections, we describe the above steps in
detail. For logic mapping, we focus on folding level determi-
nation and the proposed FDS technique.

4.1 Choosing the folding level
The folding level choice is critical to achieving the best area-

delay tradeoff. As we discussed earlier, the best folding level
depends on the input circuit structure, which is obtained by
identifying each plane and obtaining the circuit parameters
within each plane. We summarize the necessary circuit pa-
rameters below:

• Number of planes in input circuit: num plane
• Number of LUTs in plane i: num LUTi

• Maximum number of LUTs among all the planes:
LUT max = max{num LUTi}, i = 1 , ...,num plane

• Logic depth of plane i: depthi

• Maximum logic depth among all the planes:
depth max = max{depthi}, i = 1 , ...,num plane

Input network

Module
library

Folding level
computation

Delay estimation

Schedule each LUT/
LUT cluster
using FDS

Perform logic 
folding?

Yes

No

Placement 
routable?

No

Yes

Satisfy area 
constraints?

Yes

Final placement 
using  modified  VPR 

placer

Satisfy delay 
constraints?

Yes

Output
reconfiguration bitsOperation 

objective

No

No

RTL module partition

1

3

4

5

6

7

8

10

11

12

14

15

Final routing
using VPR router

16

User 
constraint

Circuit parameter 
search

2

Clustering each 
LUT/LUT cluster into 

SMBs
7

Fast placement 
using  modified VPR 

placer
9

Refine 
placement?

Yes

No

13

Figure 2: Automatic design flow
• Area constraint, e.g., the available number of LEs:

available LE
• Number of reconfiguration copies in each NRAM:

num reconf
Given the specified optimization objective and constraint, e.g.,
circuit delay minimization under area constraint or area min-
imization under delay constraint, etc., the best folding level is
computed using above parameters. Due to space limitations,
we show how to target one of the design objectives. Similar
procedures can target other objectives.

Suppose the optimization goal is to minimize circuit delay.
If there is no area constraint, we can use no-folding to obtain
the shortest delay, as discussed in Section 2.2. If an area
constraint is given, it needs to be satisfied first, then the best
possible delay obtained. There are two scenarios that need to
be considered:

• Multiple planes are allowed to share resources: Since
circuit delay is equal to plane cycle times the number of
planes in the circuit, plane cycle has to be minimized un-
der the area constraint. First, we stack all the planes to-
gether, i.e., resources are shared across all planes, since
this does not increase circuit delay but reduces area.
Suppose the area used up at this point is LUT max . If
LUT max is larger than available LE , logic folding is
required to reduce the area within each plane. As dis-
cussed in Section 3, the minimum required number of
folding stages within each plane is given by:

#folding stages = d LUT max

available LE
e (1)

Since the number of folding cycles should be kept the
same in each plane, we need to use the maximum logic
depth to compute the folding level:

folding level = d depth max

#folding stages
e (2)

Using the chosen folding level, NanoMap performs FDS
and temporal clustering to obtain the area required.
If the area constraint is not satisfied, the folding level
is decreased by one. NanoMap then iterates until the
area constraint is met or the folding level reduces to
the minimum allowed, min level, which is limited by
num reconf :

min level = ddepth max ∗ num plane

num reconf
e (3)

• Multiple planes are not allowed to share resources: Such
a scenario is possible if the RTL circuit is pipelined and,
hence, the different pipeline stages need to be resident
in the FPGA simultaneously. In this scenario, temporal
logic folding can only be performed within each plane.
Then the folding level requested can be directly com-
puted by the following equation:

folding level = ddepth max ∗ available LEP
i num LUTi

e (4)

After an appropriate folding level is chosen, the RTL mod-
ule is partitioned into LUT clusters accordingly. The original
mixed module/LUT network is transformed to an equivalent
LUT/(LUT cluster) network which is fed to FDS.
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plane: (a) ASAP schedule, and (b) ALAP schedule

4.2 Force-directed scheduling
Different folding stages share the same set of LEs tempo-

rally. The overall LE usage is then determined by the folding
stage that uses the maximum number of LEs. To optimize
overall resource usage, in each plane, we propose to modify
FDS [13] to assign the LUT or LUT cluster to folding stages
and balance the resource usage of the folding stages.

FDS is a popular scheduling technique in high-level synthe-
sis. However, here we are using it in another scenario. FDS
uses an iterative approach to determine the schedule of oper-
ations to minimize overall resource usage. Resource usage is
modeled as a force. Scheduling of an operation to some time
slot, which results in the minimum force, indicates a mini-
mum increase in resource usage. Force is calculated based on
distribution graphs (DGs), which describe the probability of
resource usage for a type of operation in each time slot.

In our approach, since the LE usage in each folding cycle is
dependent on both the LUT computations and register stor-
age operations performed in parallel, two DGs, one describing
the resource usage of the LUT computations and another for
register storage usage, have to be built.

4.2.1 Creation of DGs
First, to build the LUT computation DG, the time frame

of each LUT or LUT cluster needs to be determined. For a
LUT or LUT cluster i, its time frame time framei, or feasi-
ble time interval, is defined as the span from the folding cycle
it is assigned to in the as-soon-as-possible (ASAP ) schedule
to the folding cycle it is assigned to in the as-late-as-possible
(ALAP ) schedule. From the ASAP/ALAP schedules shown
in Fig. 3 for some example, we can see that time frameLUT2

spans folding cycles 1 to 3, denoted as [1, 3]. Here, clusi

denotes LUT cluster i. If a uniform probability distribu-
tion is assumed, the probability that this computation is as-
signed to a feasible folding cycle j within its time frame equals
1/|time framei | for j ∈ time framei .

A LUT computation DG models the aggregated probabil-
ity distribution of the potential concurrency of N LUT/(LUT
cluster) computations within each folding cycle j, whose value
LUT DG(j) is the sum of the probabilities of all the compu-
tations assigned to this folding cycle, as follows:

LUT DG(j) =

NX
i=1

1

|time framei|
∗ weighti (5)

where weighti is 1 for a LUT and equal to the number of
LUTs in a LUT cluster.

To build the register storage DG, which models the distri-
bution of register storage usage, we adopt a similar procedure
from [13]. A storage operation is created at the output of ev-
ery source computation that transfers a value to one or more
destination computations in a later folding cycle. The dis-
tribution of the storage operation equals its lifetime, which
begins from the folding cycle of the source and ends at the
folding cycle of the last destination. If one or more of the
source or destinations are not scheduled, we have to obtain a
probabilistic distribution.

First, ASAP life and ALAP life of a storage operation are
defined as its lifetime in the ASAP and ALAP schedules,
respectively. For example, in Fig. 4, the output of source
computation LUT2, i.e., storage S, transfers the value to
destination computations LUT3 and LUT4. In the ASAP
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schedule, S begins at folding cycle 2 and ends at folding cycle
3. Hence, ASAP lifeS = [2, 3] and the length of ASAP life:
|ASAP lifeS| = 2. Similarly, |ALAP lifeS| = 1.

The longest possible lifetime max life for the storage op-
eration is the union of its ASAP life and ALAP life, whose
length is obtained as:
|max life| = (ALAP life end − ASAP life begin + 1) (6)

If ASAP life overlaps with ALAP life, the overlap time,
overlap, is the intersection of ASAP life and ALAP life, whose
length is similarly obtained as:

|overlap| = (ASAP life end − ALAP life begin + 1) (7)
Then an estimate of the average length of all possible lifetimes
can be obtained by:

avg life =
|ASAP life| + |ALAP life| + |max life|

3
(8)

Next, the probability of a storage operation performed for a
LUT or LUT cluster computation i in folding cycle j can be
calculated as follows.

When j is outside of overlapi and j ∈ max lifei,

storagei(j) =
avg lifei − |overlapi|
|max lifei| − |overlapi|

∗ weighti (9)

When j is within overlapi, which means a storage operation
must be performed,

storagei(j) = weighti (10)

The process is carried out for all storage operations, and sepa-
rate probabilities due to N LUTs and LUT clusters in folding
cycle j are added to obtain a single storage DG as follows.

storage DG(j) =

NX
i=1

storagei(j), j ∈ max lifei (11)

The two DGs obtained for the example in Fig. 3 are shown in
Fig. 5.

4.2.2 Calculation of forces
In the FDS algorithm, force is used to model the impact

of scheduling of operations on resource usage. A higher force
implies higher concurrency of run-time operations, which re-
quires more resources in parallel. The force in cycle j is calcu-
lated based on DGs, which present the probability of resource
usage concurrency:

force(j) = DG(j) ∗ x(j) (12)

where DG(j) is either LUT DG(j) or storage DG(j) in our
case, and x(j) is the increase (or decrease) in the probability
of computation in cycle j due to the scheduling of the com-
putation. For example, before scheduling, the computation
has a uniform probability of being scheduled in each folding
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cycle in its time frame. If in a scheduling attempt, the com-
putation is scheduled in folding cycle a, the probability of the
computation being scheduled in folding cycle a will increase
to 1 and the probability of it being scheduled in other folding
cycles will decrease to 0. The self-force associated with the
assignment of a computation i, whose time frame spans fold-
ing cycles a to b, to folding cycle j is defined as the sum of all
the resulting forces in its time frame:

self forcei(j ) = DG(j) ∗ x(j) +

bX
k=a,k 6=j

[DG(k) ∗ x(k)]

x(j) = (|time framei| − 1)/|time framei|
x(k) = −1/|time framei| (13)

In our approach, resource usage can be dictated by either
LUT computations or storage operations. Assume there are h
LUTs and l flip-flops in one LE, then the self-force for schedul-
ing a LUT or LUT cluster i in folding cycle j is determined
by both the self-force from LUT computation and self-force
from storage operations as

max{LUT self forcei(j )/h, storage self forcei(j )/l} (14)

Assigning a LUT computation to a specific folding cycle
will often affect the time frame of its predecessors and suc-
cessors, which in turn creates additional forces affecting the
original move. Equation (13) is used to compute the force
exerted by each predecessor or successor. The overall force is
then the sum of the self-force and forces of predecessors and
successors. Then the total forces under each schedule for a
computation are compared and the computation is scheduled
into the folding cycle with the lowest force. This results in
the least concurrency.

4.2.3 Summary of the FDS algorithm
The pseudo-code of the proposed FDS technique is shown

in Algorithm 1. It uses an iterative approach to schedule one
computation in each iteration. In each iteration, the LUT
computation and register storage DGs are obtained. The
LUT or LUT cluster with the minimum force is chosen, and
assigned to the folding cycle with the minimum force. This
procedure continues until all the LUT or LUT cluster compu-
tations are scheduled.

Algorithm 1 Force-directed scheduling

1: for LUT/(LUT cluster) computations to be scheduled do
2: evaluate its time frame using ASAP and ALAP scheduling
3: create the LUT computation and register storage DGs
4: for each unscheduled LUT/(LUT cluster) computation i do
5: for each feasible clock cycle j it can be assigned to do
6: calculate the self-force of assigning node i to cycle j
7: add predecessor and successor forces to self-forces to get the

total force for node i in cycle j
8: end for
9: select the cycle with the lowest total force for node i
10: end for
11: Pick the node with the lowest total force and schedule it in the

selected cycle
12: end for

4.3 Temporal clustering
After scheduling, a network of LUTs is assigned to each

folding stage. For each folding stage, we use a constructive
algorithm to assign LUTs to LEs and pack LEs into MBs and
SMBs. To construct each SMB, we first choose a LUT cluster
with a maximal number of inputs and choose a LUT, which
uses a maximal number of its inputs, within that cluster as
an initial seed. Then, new LUTs with high attractions to the
seed LUT are chosen and assigned to the SMB. The attrac-
tion between a LUT and the seed LUT depends on timing
criticality and input pin sharing [16].

To support temporal logic folding, inter-folding stage re-
source sharing needs to be considered during clustering. Since
due to logic folding, several folding stages may be mapped to
a set of LEs, some of the LEs may be used to store the internal
results and transfer them to another folding cycle. Such LEs
may perform this job over several cycles and feed other LEs
in each folding cycle. As illustrated in Fig. 6(a), in an earlier
folding cycle, two LUTs may have very few attractions be-
tween them (e.g., C and D), but may have a large number of
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Figure 6: (a) Clustering, and (b) placement with logic
folding

attractions in a later cycle. When performing temporal clus-
tering, the attractions of two LUTs over all the cycles need to
be accounted for. Thus, the attraction of such a LUT is set
to the maximum of its attractions over all the cycles.

4.4 Placement and routing
We modified VPR [15] to perform placement and routing.

Placement uses a two-step simulated annealing approach. It
starts with a fast low-precision placement. Routability anal-
ysis and delay estimation are then used to evaluate the qual-
ity of this initial placement. For routability analysis, we use
a highly-efficient empirical estimation technique [17]. De-
lay estimation is based on the timing analysis step of VPR.
Routability analysis and delay estimation results are then
used to evaluate the feasibility of the initial placement, which
determines whether a high-precision placement or another
round of logic folding should be invoked.

We modified the VPR placer to support temporal logic fold-
ing, which introduces inter-folding stage dependencies. Con-
sider the example in Fig. 6(b). In folding cycle 1, since there
are few connections between C and D, they may be placed
far apart. However, such a placement would not be good for
folding cycle 2 in which C and D communicate a lot. The
Manhattan distance is computed between each pair of SMBs
belonging to different folding stages. The net bounding box
in other unplaced cycles are estimated using this Manhattan
distance and added to the cost function for the current cycle
to guide placement. Routing by the VPR router is conducted
in a hierarchical fashion, first using direct links, then length-1
and length-4 wire segments and finally global interconnects
(these are the four types of interconnects available in NA-
TURE). Note that a length-i interconnect spans i SMBs.

4.5 Complexity of the algorithm
In each iteration of the loop, the most computationally in-

tensive steps are FDS and placement, whose complexities are
O(n2) [13] and O(n4/3) [18], respectively. The maximum num-
ber of iterations performed is related to the maximum logic
depth of the circuit. Suppose the logic depth of the circuit is
m, then the complexity of the flow is O(mn2).

5. EXPERIMENTAL RESULTS
In this section, we present experimental results for the map-

ping of seven RTL/gate-level benchmarks to an instance of
NATURE using NanoMap. Based on the observations in [7],
we use an architecture instance with one four-input LUT in
an LE, four LEs in an MB and four MBs in an SMB to obtain
good area-delay trade-offs. In our experiments, we observed
that temporal logic folding greatly reduces the area for im-
plementing logic, so much so that the number of registers in
the design becomes the bottleneck for area reduction. Thus,
as opposed to traditional LEs that include only one flip-flop,
we include two flip-flops per LE. This does increase an SMB’s
area to 1.5X (all experiments are based on a 100nm technol-
ogy). However, this is more than offset by the significant re-
duction in overall area. To fully explore the potential of logic
folding, we assume that a varying number of reconfiguration
sets, k, is available in NRAMs depending on the application.
We also show the tradeoffs when the size of NRAM is fixed
to 16 sets instead.

Among the seven benchmarks we targeted, ex1 is the circuit
shown in Fig. 1 but with a bit-width of 16. ex2 is an RTL
circuit from [19]. Paulin is a differential-equation solver [19],
and FIR and Biquad are two types of digital filters. ASPP4 is
an application-specific programmable processor [20]. c5315 is
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Table 1: Circuit mapping results for AT product optimization
Max No folding AT optimization (k enough) AT optimization (k = 16)

Circuit #Planes plane #LUTs
#Flip

Delay Folding Delay AT Folding Delay AT
depth

flops #LEs
(ns) level

#LEs
(ns) Improv. level

#LEs
(ns) Improv.

ex1 1 24 644 50 644 12.90 1 34 17.02 14.36X 2 68 15.60 7.83X

FIR 1 25 678 112 678 14.20 1 56 18.50 9.29X 2 72 16.90 7.91X

ex2 3 22 694 130 694 38.76 1 67 48.84 8.22X 2 88 42.90 7.13X

c5315 1 14 792 0 792 7.86 1 144 10.36 4.17X 1 144 10.36 4.17X

Biquad 1 22 1376 64 1376 12.34 1 68 16.28 15.34X 2 136 14.30 8.73X

Paulin 2 24 1468 147 1468 26.74 1 106 35.52 10.43X 2 136 31.20 9.25X

ASPP4 2 24 2240 160 2240 26.80 1 100 36.96 16.24X 2 200 32.40 9.26X

Table 2: Circuit mapping results for typical optimizations
Circuit Optimization Area const. (#LEs) Delay const. (ns) Folding level #LEs Delay (ns)

ex1 Delay − − 1 34 17.02

FIR Delay 110 − 3 108 16.74

ex2 Area − 40 11 352 38.04

c5315 Area − − 1 144 10.36

Biquad Delay 100 − 1 68 16.28

Paulin − 210 30 3 204 29.76

ASPP4 Area − 28.5 6 600 28.32

a gate-level ALU implementation from the ISCAS’85 bench-
mark suite. NanoMap was run on a 2GHz PC with 1GB
DRAM under RedHat Linux 9. The mapping CPU times
were less than a minute for all the benchmarks.

We first map all benchmarks under the area-time (AT)
product minimization objective to show the logic density ben-
efits of temporal logic folding against the traditional no-folding
case. The corresponding area (no. of LEs is used as a proxy
for area because of the regular architecture), circuit delay
and AT product improvement with respect to the no-folding
case for the scenarios without and with limitations on k are
shown in Table 1. We can see that AT product optimization
is achieved with folding level-1 in all the cases when there
is no restriction on k, because an increase in circuit delay is
more than overcome by the dramatic reduction in area. The
average reduction in the no. of LEs is 14.8X (9.2X) and in
the AT product 11.0X (7.8X) at the price of a 31.8% (19.4%)
increase in circuit delay for large enough k (k limited to 16).

NanoMap can target many different optimization objec-
tives. Due to space limitations, we choose different optimiza-
tion objectives for different benchmarks and present the re-
sults in Table 2. In Column 2, we mention the objective and
in Columns 3 and 4 the constraint (area or delay). These
results show the versatility of NATURE and NanoMap. A
significant side-benefit of the dramatic area reduction made
possible by logic folding is the associated reduction in the
need for a deep interconnection hierarchy in NATURE. Since
cycle-by-cycle reconfiguration makes LE utilization very high,
we found that global interconnect usage went down by more
than 50% when using level-1 folding as opposed to no-folding.
This points to trading interconnect area for increased NRAM
area as an attractive alternative for NATURE.

6. CONCLUSIONS
In this paper, we introduced an RTL/gate-level automatic

design optimization flow, NanoMap, for the hybrid nanotube/
CMOS dynamically reconfigurable architecture, NATURE.

NATURE supports fine-grain run-time reconfiguration and,
hence, enables logic folding. Through logic folding, signifi-
cant logic density improvement and flexibility in performing
area-delay tradeoffs are made possible. NanoMap incorpo-
rates temporal logic folding during the logic mapping, tem-
poral clustering and placement steps. It can automatically
select the best folding level and use FDS to balance resources
across different folding stages. The mapping can be targeted
at various optimization objectives and user constraints. With
NanoMap, the potential of NATURE can be effectively real-
ized.
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