In each of the exercises, prove the proposition in Isabelle/Isar using the inference rules described in the lecture slides and the following rules.

Equal-Intro-Forwards

If \(L_i \) proves \(P \rightarrow Q \) and \(L_j \) proves \(Q \rightarrow P \), then write

\[
\text{from } L_i \ L_j \text{ have } L_k: \ "P = Q" \quad \text{by blast}
\]

Equal-Intro-Backwards

have \(L_k: \ "P = Q" \)

proof

assume \(L_i: \ "P" \)

\[\vdots \]

\[\ldots \text{show } "Q" \ldots \]

next

assume \(L_i: \ "Q" \)

\[\vdots \]

\[\ldots \text{show } "P" \ldots \]

qed

Equal-Elim (1)

If \(L_i \) proves \(P = Q \) and \(L_j \) proves \(Q \), then write

\[
\text{from } L_i \ L_j \text{ have } L_k: \ "P" \ldots
\]

Equal-Elim (2)

If \(L_i \) proves \(P = Q \) and \(L_j \) proves \(P \), then write

\[
\text{from } L_i \ L_j \text{ have } L_k: \ "Q" \ldots
\]
You may also use the law of excluded middle:

have \(L_k: \neg P \lor P \) by (rule excluded_middle)

Exercise 1 Modus tollens: \(\neg Q \land (P \rightarrow Q) \rightarrow \neg P \).

Exercise 2 Disjunctive syllogism: \((P \lor Q) \land \neg P \rightarrow Q \).

Exercise 3 Resolution: \((p \lor q) \land (\neg p \lor r) \rightarrow q \lor r \).

Exercise 4 Equivalence of implication and disjunction with negation: \((P \rightarrow Q) = (\neg P \lor Q) \).

Exercise 5 \((A \land B) = (B \land C) \lor B \rightarrow A = C\).

Exercise 6 Prove the universal modus ponens rule. The statement of the theorem is shown below. (Replace the oops with your proof.) You can give a name to a theorem by putting that name after the **theorem** keyword followed by a colon. The **assumes/shows** notation allows you to label the assumptions and separate them out from the conclusion.

theorem universal_modus_ponens:
 assumes 1: "\(\forall x. P(x) \rightarrow Q(x) \)"
 and 2: "P(a)"
 shows "Q(a)"
 oops

Exercise 7 Use the universal modus ponens theorem to shorten the proof (from the lecture slides) that every man has two legs. You can apply a theorem just like a rule, write by (rule universal_modus_ponens).

Exercise 8 Prove that if \(\exists x. P \land Q x \), then \(P \land (\exists x. Q x) \). Note that the notation \(Q x \) is equivalent to \(Q(x) \).

For the next few exercises, use the following definitions for even and odd.

definition even :: "nat \Rightarrow bool" where
 "even n \equiv \exists m. n = 2 \times m"

definition odd :: "nat \Rightarrow bool" where
 "odd n \equiv \exists m. n = 2 \times m + 1"

Exercise 9 Prove that zero is not odd.

Exercise 10 Prove that the sum of two odd natural numbers is even.

Exercise 11 Prove that every odd natural number is the difference of two squares.
theorem modus_tollens: "¬ q ∧ (p → q) → ¬ p"
proof
 assume 1: "¬ q ∧ (p → q)"
 from 1 have 2: "¬ q" ..
 from 1 have 3: "p → q" ..
 show "¬ p"
 proof
 assume 4: "p"
 from 3 4 have 5: "q" ..
 from 2 5 show "False" ..
 qed
qed

theorem disjunctive_syllogism: "(p ∨ q) ∧ ¬ p → q"
proof
 assume 1: "(p ∨ q) ∧ ¬ p"
 from 1 have 2: "¬ p" ..
 from 1 have 4: "p ∨ q" ..
 note 4
 moreover {
 assume 3: "p"
 from 2 3 have "q" ..
 } moreover {
 assume 1: "q"
 from 1 have "q".
 } ultimately show "q" ..
qed

theorem resolution: "(p ∨ q) ∧ (¬ p ∨ r) → q ∨ r"
proof
 assume 1: "(p ∨ q) ∧ (¬ p ∨ r)"
 from 1 have "p ∨ q" ..
 moreover {
 assume 3: "p"
 from 1 have "¬ p ∨ r" ..
 moreover { assume 4: "¬ p"
 from 4 3 have "q ∨ r" ..
 } moreover {
 assume 5: "r"
 from 5 have "q ∨ r" ..
 } ultimately have "q ∨ r" ..
 } moreover {
 assume 6: "q"
 from 6 have "q ∨ r" ..
 } ultimately show "q ∨ r" ..
qed

theorem imp_disj_equiv: "(P → Q) = (¬ P ∨ Q)"
proof
 assume 1: "P → Q"

have 4: "¬ P ∨ P" by (rule excluded_middle)

note 4

moreover {
 assume 2: "¬ P"
 from 2 have "¬ P ∨ Q" ..
} moreover {
 assume 2: "P"
 from 1 2 have 3: "Q" ..
 from 3 have "¬ P ∨ Q" ..
} ultimately show "¬ P ∨ Q" ..

next

assume 1: "¬ P ∨ Q"
show "P → Q"

proof
 assume 2: "P"
 note 1
 moreover {
 assume 3: "¬ P"
 from 3 2 have "Q" ..
 }
 moreover {
 assume 3: "Q"
 from 3 have "Q" .
 }
 ultimately show "Q" ..

qed

qed

gs

gs

gs

gs

theorem "((A ∧ B) = (B ∧ C)) ∧ B → A = C"

proof
 assume 1: "(A ∧ B) = (B ∧ C) ∧ B"
 from 1 have 2: "(A ∧ B) = (B ∧ C)" ..
 from 1 have 3: "B" ..
 show "A = C"
 proof
 assume 4: "A"
 from 4 3 have 5: "A ∧ B" ..
 from 2 5 have 6: "B ∧ C" ..
 from 6 show "C" ..

next
 assume 4: "C"
 from 3 4 have 4: "B ∧ C" ..
 from 2 4 have 5: "A ∧ B" ..
 from 5 show "A" ..

qed

qed

theorem universal_modus_ponens:
 assumes 1: "∀ x. P(x) → Q(x)"
 and 2: "P(a)"
 shows "Q(a)"
 proof
 from 1 have 3: "P(a) → Q(a)" ..
from 3 2 show "Q(a)" ..
qed

theorem
assumes 1: "∀ x. man(x) −→ human(x)"
and 2: "∀ x. human(x) −→ hastwolegs(x)"
shows "∀ x. man(x) −→ hastwolegs(x)"

proof
 fix m
 show "man(m) −→ hastwolegs(m)"
 proof
 assume 3: "man(m)"
 from 1 3 have 5: "human(m)" by (rule universal_modus_ponens)
 from 2 5 show "hastwolegs(m)" by (rule universal_modus_ponens)
 qed
qed

theorem
assumes 1: "∃ x. P ∧ Q(x)"
shows "P ∧ (∃ x. Q(x))"

proof
 from 1 obtain y where 2: "P ∧ Q(y)" ..
 from 2 have 3: "P" ..
 from 2 have 4: "Q(y)" ..
 from 4 have 5: "∃ x. Q(x)" ..
 from 3 5 show "P ∧ (∃ x. Q(x))" ..
qed

theorem zero_not_odd: "¬ odd 0"

proof
 assume 1: "odd 0"
 from 1 have 2: "∃ m::nat. 0 = 2 * m + 1" unfolding odd_def .
 from 2 obtain k::nat where 3: "0 = 2 * k + 1" ..
 from 3 show "False" by simp
qed

theorem
assumes 1: "odd n" and 2: "odd m"
shows "even (n + m)"

proof
 from 1 have "∃ m::nat. n = 2 * m + 1" unfolding odd_def .
 from this obtain k where 3: "n = 2 * k + 1" ..
 from 2 have "∃ q::nat. m = 2 * q + 1" unfolding odd_def .
 from this obtain q where 4: "m = 2 * q + 1" ..
 from 3 4 have "n + m = 2 * k + 2 * q + 2" by simp
 also have "... = 2 * (k + q + 1)" by simp
 finally have 5: "n + m = 2 * (k + q + 1)" .
 from 5 have 6: "∃ x::nat. (n + m) = 2 * x" ..
 from 6 show "even (n + m)" unfolding even_def .
qed
theorem
 assumes 1: "odd n"
 shows "∃ x. ∃ y. n = x * x - y * y"
proof -
 from 1 have "∃ m. n = 2 * m + 1" unfolding odd_def .
 from this obtain k where 2: "n = 2 * k + 1" ..
 from 2 have 3: "n = (k + 1) * (k + 1) - k * k" by simp
 from 3 have 4: "∃ y. n = (k + 1) * (k + 1) - y * y" ..
 from 4 show "∃ x. ∃ y. n = x * x - y * y" ..
qed