Discrete Mathematics
Quiz 1 Solutions

Jeremy Siek
Spring 2010

theorem "p ∧ (p → q) → p ∧ (q ∨ r)"
proof — implies intro
 assume 1: "p ∧ (p → q)"
 from 1 have 2: "p" .. — and elim (1)
 from 1 have 3: "p → q" .. — and elim (2)
 from 3 2 have 4: "q" .. — implies elim
 from 4 have 5: "q ∨ r" .. — or intro (1)
 from 2 5 show "p ∧ (q ∨ r)" .. — and intro
qed

theorem "¬ p ∨ ¬ q → ¬ (p ∧ q)"
proof — implies intro
 assume 1: "¬ p ∨ ¬ q"
 show "¬ (p ∧ q)"
 proof — not intro
 assume 2: "p ∧ q"
 from 2 have 3: "p" .. — and elim (1)
 from 2 have 4: "q" .. — and elim (2)
 note 1 — or elim
 moreover { assume 5: "¬ p"
 from 5 3 have "False" .. — not elim
 } moreover { assume 6: "¬ q"
 from 6 4 have "False" .. — not elim
 } ultimately show "False" ..
qeda