What does it mean for a unification algorithm to be correct?
What is the relationship between the input and output?
 ▶ Input: a set of equations.
 ▶ Output: a solution which maps type variables to types (it is a substitution).
Does the algorithm terminate?
A substitution S is a *unifier of an equation* $T_1 \equiv T_2$ if $S(T_1) = S(T_2)$, i.e., the results of substitution are syntactically equal.

Example: $\{\alpha \mapsto \text{bool}, \beta \mapsto \text{int}\}$ unifies $\alpha \rightarrow \text{int} \equiv \text{bool} \rightarrow \beta$.

A *unifier of a set of equations* E is a substitution S that unifies every equation in E.
The unification algorithm takes one step at a time, simplifying a set of equation E to a new set E'. We write $E \rightarrow E'$ for one of these steps.

The unification algorithm ends when none of the rules applies to the current equation set, i.e. $\neg \exists E'. E \rightarrow E'$.

We can read off a solution from a set of equations E if it is on solved form:

1. All the equations have the form $\alpha = T$.
2. If a variable occurs on the left of an equation, it does not occur anywhere else.

$$\{\alpha_1 = T_1, \ldots, \alpha_n = T_n\} \rightarrow \{\alpha_1 \mapsto T_1, \ldots, \alpha_n \mapsto T_n\}$$
Lemma

If $\neg \exists E'. E \rightarrow E'$ then E is in solved form.
The output S is obviously a unifier for the final set of equations, call it E_f.

$E_f = \{ \alpha_1 = T_1, \ldots, \alpha_n = T_n \}$

$S = \{ \alpha_1 \mapsto T_1, \ldots, \alpha_n \mapsto T_n \}$

$S(E_f) = \{ T_1 = T_1, \ldots, T_n = T_n \}$

But is S a unifier for the initial set of equations, E_0?

$(E_0 \xrightarrow{n} E_f)$

How can we prove that it is?
Is the output a unifier of the equations?

Lemma

If \(E \rightarrow E' \) and \(S \) unifies \(E' \) then \(S \) unifies \(E \).

Theorem (Soundness of the unification algorithm)

If \(E \rightarrow^* E' \) and \(S \) unifies \(E' \) then \(S \) unifies \(E \).
If there is a solution, will the algorithm find it?

▶ Suppose there is a solution S that unifies E. When we run the algorithm, will it stop with a set E_f that is in solved form?
▶ What is the relationship between E_f and S?
A *most general unifier* of E is a substitution S that unifies E and, for any other substitution R that unifies E, there exists U such that $U \circ S = R$.

Example: let E be $\{\alpha \doteq \beta, \gamma \doteq \alpha \rightarrow \beta\}$. Then $S = \{\alpha \mapsto \beta, \gamma \mapsto \beta \rightarrow \beta\}$ is a most general unifier of E.

Another solution of E is $R = \{\alpha \mapsto \text{int}, \beta \mapsto \text{int}, \gamma \mapsto \text{int} \rightarrow \text{int}\}$ but have $\{\beta \mapsto \text{int}\} \circ S = \{\alpha \mapsto \text{int}, \beta \mapsto \text{int}, \gamma \mapsto \text{int} \rightarrow \text{int}\} = R$.

Another solution of E is $R = \{\alpha \mapsto \text{bool}, \beta \mapsto \text{bool}, \gamma \mapsto \text{bool} \rightarrow \text{bool}\}$ but have $\{\beta \mapsto \text{bool}\} \circ S = \{\alpha \mapsto \text{bool}, \beta \mapsto \text{bool}, \gamma \mapsto \text{bool} \rightarrow \text{bool}\} = R$.
Lemma

If S is a unifier of E, then either E is in solved form or there is an E' such that $E \rightarrow E'$ and S is a unifier of E'.

Lemma

If S is a unifier of E and E is in solved form, then the solution S' read from E is more general than S: there is an R such that $R \circ S' = S$.

Theorem (Completeness)

If S is a unifier of E then there exists an E_f such that $E \rightarrow^* E_f$ such that E_f is in solved form, and the solution S_f read from E_f is the most general unifier.
Most proofs of termination associate a number with all the state used by an algorithm, and show that this number shrinks with each step of the algorithm.

This association is called a measure function.

We need to come up with a measure function m on a set of equations and prove the following lemma.

Lemma

If $E \rightarrow E'$ then $m(E) < m(E')$.
Measure function

\[m(E) = (n_1, n_2, n_2) \]

- \(n_1 \) is the number of variables in \(E \) that do not occur only once as the left-hand side of some equation.
- \(n_2 \) is the total size of all the equations in \(E \).
- \(n_3 \) is the number of equations of the form \(\alpha = \alpha, \text{int} = \text{int}, \) and \(T = \alpha \).

The ordering relation \(< \) that we use to compare tuples is the lexicographical ordering:

\[
(n_1, n_2, n_2) < (n'_1, n'_2, n'_2) = n_1 < n'_1 \lor ((n_1 = n'_1 \land n_2 < n'_2) \\
\lor (n_1 = n'_1 \land n_2 = n'_2 \land n_3 < n'_3))
\]
Termination

Theorem

For any E, there exists an n and E' such that $E \rightarrow^n E'$ and
$\neg \exists E''. E' \rightarrow E''$.