Decomposition Lemma

Lemma (Decomposition)

If \(e : T \) then either \(e \) is a value or there is an \(E \) and \(r \) where \(e = E[r] \) and \(E : S \Rightarrow T \) and \(r : S \) and \(r \) is a redex.

Proof by rule induction on \(e : T \).

Case (1) \(0 : \text{nat} \): 0 is a value.

Case (5) \(\frac{e_1 : \text{nat}}{\text{succ } e_1 : \text{nat}} \):

Subcase (5a): Suppose \(e_1 \) is a value. From \(e_1 : \text{nat} \) we know that \(e_1 \) is a numerical value by the canonical forms lemma. Therefore \(\text{succ } e_1 \) is a value.

Subcase (5a): Suppose \(e_1 \) is not a value. From the induction hypothesis there is an \(E_1 \) and \(r \) such that \(e_1 = E_1[r] \), \(E_1 : S \Rightarrow \text{nat} \), \(r : S \), and \(r \) is a redex. Then we let \(E = \text{succ } E_1 \) so \(e = E[r] \) and \(E : S \Rightarrow \text{nat} \) and we use the same \(r \) to conclude.
Decomposition Lemma, continued

Case (4)

\[\begin{array}{ccc}
 e_1 : \text{bool} & e_2 : T & e_3 : T \\
 \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : T \\
\end{array} \]

Subcase (4a): Suppose \(e_1 \) is a value. Then by the canonical forms lemma, \(e_1 \) is either true or false.

Subsubcase (4ai): Suppose \(e_1 = \text{true} \). Then let \(E = [] \) and \(r = e \).
So we have \(e = E[r] \), \(E : T \Rightarrow T \), \(r : T \), and \(r \rightarrow e_2 \).
Subsubcase (4ai): Suppose \(e_1 = \text{false} \). Same as (4ai) except \(r \rightarrow e_3 \).

Subcase (4b): Suppose \(e_1 \) is not a value. From the induction hypothesis there is an \(E_1 \) and \(r \) such that \(e_1 = E_1[r] \), \(E_1 : S \Rightarrow \text{bool} \), \(r : S \), and \(r \) is a redex. Then we let \(E = \text{if } E_1 \text{ then } e_2 \text{ else } e_3 \) so \(e = E[r] \) and \(E : S \Rightarrow T \) and we use the same \(r \) to conclude.
Lemma (Subject Reduction)

If \(e : T \) and \(e \rightarrow e' \) then \(e' : T \).

Proof by case analysis on \(e : T \).

Case (1) \(0 : \text{nat} \): There is no \(e' \) such that \(0 \rightarrow e' \).

Case (6) \(\frac{e_1 : \text{nat}}{\text{pred } e_1 : \text{nat}} \):

Proof by case analysis on \(e \rightarrow e' \).

Subcase (6a): \(\text{pred } 0 \rightarrow 0 \). So \(e' = 0 \) and \(0 : \text{nat} \).

Subcase (6b): \(\text{pred succ } nv \rightarrow nv \). So \(e' = nv \) and \(nv : \text{nat} \).
Lemma (Replacement)

If $E : S \Rightarrow T$ and $e : S$ then $E[e] : T$.

By rule induction on $E : S \Rightarrow T$.

Case (1) $[] : T \Rightarrow T$:

So $E = []$ and $e : T$. Since $[][e] = e$ we have $E[e] : T$.

Case (2) $E_1 : S \Rightarrow \text{bool } e_1 : T e_2 : T$:

So $E = \text{if } E_1 \text{ then } e_1 \text{ else } e_2 : S \Rightarrow T$.

By the induction hypothesis we have $E_1[e] : \text{bool}$. Therefore $E[e] : T$.

Case (3) $E_1 : S \Rightarrow \text{nat}$:

So $E = \text{succ } E_1$. By the induction hypothesis we have $E_1[e] : \text{nat}$. Therefore $E[e] : \text{nat}$.
Lemma (Progress)

If $e : T$ then either e is a value or an evaluation rule applies to e (i.e., $\exists e'. e \rightarrow e'$).

Proof.

From the decomposition lemma, either either e is a value OR there is an E and r where $e = E[r]$ and $E : S \Rightarrow T$ and $r : S$ and r is a redex.

Case (1): Suppose e is a value. Then we are done.

Case (2): Suppose there is an E and r where $e = E[r]$ and $E : S \Rightarrow T$ and $r : S$ and r is a redex. By definition of redex, there is an r' such that $r \rightarrow r'$. Then we have $e \leftrightarrow E[r']$ and we are done.
Lemma (Subterm Typing)

If $e : T$ and $e = E[r]$ then there is an S such that $E : S \Rightarrow T$ and $r : S$.

Proof.

By rule induction on $e : T$.

Case (1) $0 : \text{nat}$:

So $E = []$ and $r = 0$, and we have $E : \text{nat} \Rightarrow \text{nat}$ and $r : \text{nat}$.

Case (5) $\frac{e_1 : \text{nat}}{\text{succ } e_1 : \text{nat}}$:

By case analysis on E, E is either $[]$ or $\text{succ } E_1$.

Subcase (5a): $E = []$. Then $r = e$, $E : \text{nat} \Rightarrow \text{nat}$, and $r : \text{nat}$.

Subcase (5b): $e = \text{succ } E_1$. Applying the induction hypothesis, there is an S such that $E_1 : S \Rightarrow \text{nat}$ and $r : S$. So $\text{succ } E_1 : S \Rightarrow \text{nat}$ and we conclude with the same r.
Lemma (Preservation)

If $e : T$ and $e \rightarrow e'$ then $e' : T$.

Proof.

By case analysis on $e \rightarrow e'$. There is just one case:

$$
\begin{array}{c}
 r \rightarrow r' \\
 E[r] \rightarrow E[r']
\end{array}
$$

So $e = E[r]$ and by the subterm typing lemma, there is an S such that $E : S \Rightarrow T$ and $r : S$. Then by subject reduction lemma we have $r' : S$. Then by the replacement lemma we have $E[r'] : T$ and we are done.
The Simply Typed Lambda Calculus (STLC)

\[e ::= \quad x \mid true \mid false \mid (\lambda x : T. \ e) \mid (e \ e) \]

\[v ::= \quad true \mid false \mid (\lambda x : T. \ e) \]

\[T ::= \quad bool \mid T \to T \]

(The constants true and false technically aren’t part of the STLC, but you have to introduce some type other than function types to get off the ground.)

1. \[\frac{x : T \in \Gamma}{\Gamma \vdash x : T} \]
2. \[\frac{}{\Gamma \vdash true : bool} \]
3. \[\frac{}{\Gamma \vdash false : bool} \]
4. \[\frac{\Gamma, x : T_1 \vdash e : T_2}{\Gamma \vdash (\lambda x : T_1. \ e) : T_1 \to T_2} \]
5. \[\frac{\Gamma \vdash e_1 : T_{11} \to T_{12} \quad \Gamma \vdash t_2 : T_{11}}{\Gamma \vdash (e_1 \ e_2) : T_{12}} \]
STLC: Evaluation

$$((\lambda x : T. \ e) \ v) \longrightarrow [x \mapsto v] e$$

$$E ::= [] \mid (E \ e) \mid (v \ E)$$

$$e \longrightarrow e' \quad \frac{E[e] \longleftarrow E[e']}{E[e] \longleftarrow E[e']}$$
Properties of the STLC Type System

Lemma (Environment Weakening)
If \(\Gamma \vdash e : T \) and \(x \notin \text{dom}(\Gamma) \) then \(\Gamma, x : S \vdash e : T \).

Lemma (Substitution)
If \(\Gamma, x : S \vdash e : T \) and \(\Gamma \vdash e' : S \), then \(\Gamma \vdash [x \mapsto e']e : T \).

Theorem (Type Safety)
If \(\Gamma \vdash e : T \) and \(e \mapsto^{*} e' \) then \(e' \) is not stuck and \(e' : T \).

Proof.
By the same sequence of lemmas as before (decomposition, subterm typing, subject reduction, replacement, progress, and preservation). However, the details of the proofs change, which is left to you.
The Curry-Howard Correspondence

From logic, recall the rule of modus-ponens:

If \((P \text{ implies } Q) \text{ and } P\), then \(Q\).

Compare this to the typing rule for function application:

\[
\begin{align*}
\Gamma \vdash e_1 : T_{11} \rightarrow T_{12} & \quad \Gamma \vdash t_2 : T_{11} \\
\Gamma \vdash (e_1 \ e_2) : T_{12}
\end{align*}
\]

and think: \(T_{11} \approx P, \ T_{12} \approx Q\).

Also, from logic, recall the rule for implication introduction:

If you can prove \(Q\) assuming \(P\), then \(P\) implies \(Q\).

Compare this to the typing rule for \(\lambda\)s:

\[
\begin{align*}
\Gamma, x : T_1 \vdash e : T_2 \\
\Gamma \vdash (\lambda x : T_1. \ e) : T_1 \rightarrow T_2
\end{align*}
\]

and think: \(T_1 \approx P\) and \(T_2 \approx Q\).

So it turns out, *types correspond to propositions and programs correspond to proofs.*