
Incremental Type-Checking for Type-Reflective Metaprograms

Weiyu Miao Jeremy Siek
University of Colorado at Boulder

{weiyu.miao, jeremy.siek}@colorado.edu

Abstract
Garcia introduces a calculus for type-reflective metaprogramming
that provides much of the power and flexibility of C++ templates
and solves many of its problems. However, one of the problems
that remains is that the residual program is not type checked until
after meta computation is complete. Ideally, one would like the
type system of the metaprogram to also guarantee that the residual
program will type check, as is the case in MetaML. However, in a
language with type-reflective metaprogramming, type expressions
in the residual program may be the result of meta computation,
making the MetaML guarantee next to impossible to achieve.

In this paper we offer an approach to detecting errors earlier
without sacrificing flexibility: we incrementally type check code
fragments as they are created and spliced together during meta
computation. The incremental type system is a variant of the grad-
ual type system of Siek and Taha, in which we use type variables
to represent type expressions that are not yet normalized and a new
dynamic variation on existential types to represent residual code
fragments. A type error in a code fragment is treated as a run-time
error of the meta computation. We show that the incremental type
checker can be implemented efficiently and we prove that if a well-
typed metaprogram generates a residual program, then the residual
program is also well-typed.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definition and Theory; D.3.4 [Programming lan-
guages]: Processors

General Terms Languages

Keywords metaprogramming, type systems, type reflection, grad-
ual typing

1. Introduction
Metaprogramming is the writing of computer programs that gener-
ate or manipulate programs. Reflection, in the context of metapro-
gramming, is the ability to inspect and/or manipulate a program’s
metadata (such as types). We say that a language supports reflec-
tive metaprogramming if it supports both staged computation and
reflection. This combination of features enables software develop-
ers to build libraries that are versatile and easy to use because the
libraries can, during compilation, adapt to the contexts in which
they are used.

γ type constants (e.g. int, bool)
x variables
c value constants

code language
e ::= x | c | λx : em.e | e e | let x = e in e | ∼ em |

let meta x = em in e | em〈em〉 | if e then e else e

meta language
em ::= x | c | cm | γ | λx : τm.em | em em | %em |

let x = em in em | if em then em else em | ≺e�
cm ::= → | γ? | →? | =τ | dom | cod | typeof

meta types
τm ::= γ | code | type | τm → τm

Figure 1. Garcia’s reflective metaprogramming calculus

Programming languages such as C++ [1, 2, 3], MetaML [4], and
Template Haskell [5], enable metaprogramming by providing mul-
tiple stages of computation, where earlier stages can manipulate
code for later stages 1. Both C++ and Template Haskell provide re-
flection to some degree, whereas MetaML does not. The template
feature of C++ enables the manipulation of types-as-data and pro-
vides a way to obtain the type of an expression. Template Haskell
supports intensional analysis, a mechanism that can inspects the
type and the internal structure of an expression in the compiler.

Garcia captured the fundamental capabilities of C++ in his re-
flective metaprogramming calculus [6, 7]. The syntax of his calcu-
lus is shown in Figure 1 2. The calculus consists of two interwoven
languages, a code language to represent code that will be evaluated
at run time, and a meta language, which is evaluated at compile
time. The calculus includes the bracket ≺e�, escape ∼ em, and
lift %e constructs from MetaML [4, 8, 9], which were in turn in-
spired by the quasi-quote mechanism of Lisp [10].

Garcia’s design preserves much of the power and flexibility of
C++ templates while providing more support for reflection on meta
data such as types. In his calculus, the meta language contains type
primitives to analyze and manipulate types (i.e. typeof queries the
type of a piece of code and dom accesses the domain of a function
type). Consider the example of serializing arguments for a remote
procedure call: we need to first serialize parameters into bitstrings.
A simple serialization function is shown in Figure 2. We assume
that the following primitive functions are available

int2str : int → bitstring
bool2str : bool → bitstring

1 C++ and Template Haskell provide two stages whereas MetaML supports
arbitrary numbers of stages.
2 The calculus presented here differs in several minor ways from Garcia’s
surface language. We omit functional generators, which are a convenience
feature and we include the splice and lift features from Garcia’s kernel
language.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’10, October 10–13, 2010, Eindhoven, The Netherlands.
Copyright c© 2010 ACM 978-1-4503-0154-1/10/10. . . $10.00

167

/∗ serialize : (type list) → code → code ∗/
let meta serialize = fix λrecur : (type list) → code → code.
λtys : (type list). λinit : code.

case tys of [] ⇒ init
| ty :: res ⇒

if ty =τ int then
≺λi : int.
∼ (recur res ≺(int2str i)+”,”+(∼ init)�)�

else
if ty =τ bool then
≺λb : bool.
∼ (recur res ≺(bool2str b)+”,”+(∼ init)�)�

else ≺”Parameter Type Error”�;;

Example use of serialize and the resulting code:

∼ (serialize [bool, int] ≺””�);;
=⇒
λb : bool.

λi : int.
(bool2str b)+”,”+(int2str i)+”,”+””

Figure 2. Example use of reflective metaprogramming.

and the meta level part of Garcia’s surface language is simply ex-
tended with list, pattern matching over list, and list type constructor,
which can be borrowed from Standard ML.

The serialize function, at compile time, iterates over the types
of the arguments of the function, dispatches to a type-specific print
function corresponding to the type of each argument, and generates
a C-like printf function that converts the parameter into a string and
then concatenates the resulting strings. In the program, we utilizes
the type reflection capability of Garcia’s calculus: for instance,
(ty =τ int) is used to inspect if ty is equal to type int.

Type System Design for Metaprogramming In the design of
type systems for metaprogramming languages, there is a tension
between static type safety, that is, guaranteeing that well-typed
metaprograms generate well-typed code, and expressiveness, en-
abling programmers to express their intent in a straightforward
manner.

A modular type system can catch type errors at their place of
origin but it restricts the set of metaprograms one can write. On the
other hand, non-modular type systems (such as that of C++) accept
a larger set of metaprograms, but some of those metaprograms may
generate ill-typed code which is difficult to debug because the error
messages point into the generated code instead of the source of the
error in the metaprogram.

Ideally, one would like the type system of a metaprogramming
language to guarantee that the residual program (object program)
will type check, as is the case in MetaML. However, adding reflec-
tive capabilities to the language, like Garcia’s calculus, makes the
MetaML guarantee next to impossible to achieve. For MetaML,
there is a phase distinction between types and meta evaluation,
while for a reflective metaprogramming language, the type of a
residual program may depend on the result of meta evaluation. For
Garcia’s calculus, there are two situations that cause this that we
discuss in the following two paragraphs.

In Garcia’s calculus, the type of a function’s argument could
be a meta-level type expression. Consider the following program,
where the last line is a pair.

let meta id =
λx : bool. ≺λy : if x then int else string. y�

in
let id int = ∼ (id true) in

let id string = ∼ (id false) in
(id int 0, id string ”zero”)

The body of meta function id contains a piece of residual code
where the type of parameter y is a type expression. If the type
expression is evaluated into int, then the residual code has type
int→ int. If it is evaluated to string, then the residual has type
string→ string.

Another reason that the type of residual code can be dependent
on meta evaluation in Garcia’s calculus is that all code fragments
are given the same type, code, ignoring the type of value computed
by the code fragment. Thus, meta-level if-expressions can produce
code fragments with different types in their branches. Consider the
following example that generates addition functions for different
types.

/∗ generic add : type → code ∗/
let meta generic add =
λt : type.

if (t =τ int) then ≺+int�
else if (t =τ float) then ≺+float�

else if (t =τ string) then ≺+string�
else if (t =τ list) then ≺append list�

else %(print error ”addition not supported”)
in
(∼ (generic add int) 2 3)

At compile time, generic add matches over the type of the param-
eter and selects a specific addition for that type. Please note that
each branch has a different type and the return type of generic add
depends on the type parameter t.

MetaML does not provide computation over types and it records
the type of a code fragment in the meta-level type of the code, i.e.,
code T instead of just code. Thus, applying a MetaML-style type
system to a reflective metaprogramming language, like Garcia’s
calculus, would restrict the set of metaprograms we can write.

Garcia proposed a type system for his calculus that type-checks
the meta language before meta evaluation and type-checks the ob-
ject language after meta evaluation. Before meta evaluation, the
type system guarantees that the residual programs inside a metapro-
gram are well formed, but not necessarily well typed. After meta
evaluation, it type-checks the code generated by the metaprogram.
For example, the following metaprogram

∼ ((λ x : code. ≺2 ∗ (∼ x)�) ≺true�)

is accepted by Garcia’s type system even though it generates the
ill-typed code: (2 ∗ true).

Although Garcia’s type system is quite permissive, thereby pro-
viding expressiveness, the type system is not modular. That is, type
checking a code fragment does not mean that all uses of the code
fragment will be well typed. One symptom of this is that type er-
ror messages do not necessarily point to the source of the problem
(in the metaprogram) but instead point to the generated code. Thus,
programmers spend time tracking down the source of type errors.
Consider the following metaprogram in which function f0 produces
ill-typed code.

let meta f0 =
λt : type.

let meta id =
λx : bool. ≺λx : (if x then t else bool) . x�

in
≺∼ (id false) 1� // type error originates at here

in
let meta f1 = ≺∼ (f0 int)� in

let meta f2 = ≺... ∼ f1...� in
... // fn is deeply nested

let meta fn = ≺...∼ fn−1...� in
∼ fn;;

Inside the definition of f0, the expression ≺∼ (id false) 1� gener-
ates ill-typed code: (λx : bool. x) 1. So ideally we would like the

168

compiler to report an error message that accurately points to this
expression inside the definition of f0. Instead, Garcia’s type system
accepts the definition and the type error is caught after meta evalu-
ation: after the metaprogram has generated a large amount of code
of which the ill-typed code is a small part.

In this paper, we present a new type system for reflective
metaprogramming (presented in Section 3). It type-checks both
the meta and object fragments before meta evaluation. The type
system is a variant of the gradual type system of Siek and Taha,
in which we use type variables to represent type expressions that
are not yet normalized and a new dynamic variation on existential
types to represent residual code fragments. We use a constraint-
based approach to provide an efficient implementation of our type
system (Section 4) and give some simple examples on how our
implementation works in Section 5. During meta evaluation, type
information is added to the constraints when it becomes available.
Thus, type-checking is interleaved with meta evaluation in the form
of constraint solving. We discuss related work in Section 6 and con-
clude the paper in Section 7.

2. Incremental Type-Checking
Motivated by the problems discussed in the previous section, we
created a new approach that type-checks metaprograms throughout
meta evaluation, thereby catching type errors as soon as there is
enough type information to discover them. Our idea is to incremen-
tally type-check code fragments as they are produced and spliced
together. Figure 3 shows a metaprogram em0 that, through n steps of
evaluation, becomes the value vmn . The code fragments within the
meta program are type-checked between each step of computation.

metaprogram

type-check

metavalue

me1

me0

m
ne 1−

m
nv

...

meta evaluation...

Figure 3. Incremental type-checking

Incremental type-checking can be applied to object-level func-
tions whose argument types are meta-level type expressions. We
take the following object expression as example.

λx1 : em1 . λx2 : em2 λxn−1 : emn−1. λxn : emn . e

Suppose all the variables are annotated with type expressions that
need to be evaluated. It is difficult to fully type-check the initial
program before meta evaluation, but after some small steps of
meta evaluation such that the type of x1 is evaluated into some
simple type (see the below code. Simple type represents those types
that are fully evaluated and do not contain variables. The formal
definition of simple type is in Figure 7),

λx1 : τs1 . λx2 : em2 λxn−1 : emn−1. λxn : emn . e

we can then type-check the expression to discover if there is a type
error caused by the simple type of x1, that is τs1 . If there is no type
error, then we meta-evaluate the expression more steps forward

until the simple type of x2 is available and then we can type-
check it again. This continues until after all the type expressions
are evaluated and the code eventually generated is definitely well-
typed.

Incremental type-checking can also be applied to dynamically-
typed meta-level if-expressions. We take the following program as
example.

let meta x1 = if em11 then ≺e12� else ≺e13� in
let meta x2 = if em21 then ≺e22� else ≺e23� in

...
let meta xn = if emn1 then ≺en2� else ≺en3� in

e

Suppose for each of the meta-level if-expressions above, the type of
the residual object code fragment in then branch could be different
from that in else branch. Before meta evaluation it is difficult to
fully type-check the entire program because the if-expressions are
dynamically typed. But after some meta evaluation steps such that
em11 is evaluated to some boolean value, the branch of the first
meta-level if expression is selected, and the type of x1 becomes
available. We can then type-check the program to discover if there
is a type error caused by the type of x1. So, the entire program
is incrementally type-checked as more of the if-expressions are
evaluated.

Literally type checking the entire metaprogram at every step of
evaluation would incur considerable cost. Instead, we derive a set
of typing constraints (equalities between type expressions) from the
program and then incrementally solve and update these constraints
during meta evaluation (see Figure 4). As meta evaluation proceeds,

me1

me0

m
ne 1−

m
nv

...

meta evaluation

constraint set 0C
type check

extra type info.
1C

1−nC
extra type info.

solution nC

...

...

Figure 4. Constraint-based incremental type-checking

more type information is available, which can add to the set of
constraints. Solving the constraint set (via unification) simplifies
the set and also discovers any type conflicts, which would indicate
a type error. After meta evaluation, if the constraint set is still
satisfiable, then the generated piece of code is guaranteed to be
well-typed.

3. Type System
We have illustrated a general picture of how incremental type-
checking works for metaprograms. In practice, we need to con-
sider how to carefully handle type expressions and meta-level poly-
morphism during type-checking so that our metaprogramming type
system not only catches type errors as early as possible but also en-
ables the writing of expressive metaprograms. As a result, we de-
sign a variant of the type system for gradual typing [11, 12], which
satisfies all of our requirements for a reflective metaprogramming
type system.

169

x variables: meta-level or object-level variables
α, β object type variables
c value constants
T type primitives (e.g. dom, cod, =τ , γ?,→?)
γ type constants (e.g. int, bool)

simple types
τs ::= γ | τs → τs

object types
τ ::= x | γ | α | τ → τ

object language
e ::= x | c | λx : em. e | e e | ∼ em

types for proper code
τo ::= x | γ | τo → τo

proper code
eo ::= x | c | λx : τo. eo | eo eo

meta types
τm ::= γ | ∃α.(code τ) | type | τm → τm

meta language
em ::= x | c | T | γ | em → em | λx : τm. em |

em em | typeof em | ≺e� | %em |
if em then em else em

meta values
vm ::= c | γ | vm → vm | λx : τm. em | ≺eo�

Figure 5. Kernel calculus

The simplified kernel metaprogramming language syntax that
we use is shown in Figure 5, and part of the syntax is bor-
rowed from Garcia’s calculus for type-reflective metaprogram-
ming. Proper code, written as eo, represents the object code gener-
ated by metaprograms after meta evaluation. For convenience, we
integrate the type reflection operators appearing in Garcia’s calcu-
lus into one category: type primitives, written as T , each of which
can be applied to a sequence of type expressions. Please note that in
the meta types, code is modified into ∃α.(code τ), where τ means
that it is a requirement to type-check a piece of object code thor-
oughly before meta evaluation in our type system, and existential
quantification over the type variables appearing in τ means that if
a piece of code is well-typed, then during meta evaluation, we can
always find some actual types to substitute those quantified type
variables in τ .

Gradual Typing. Gradual typing gives the programmer control
over which portions of the program are statically checked based
on the presence or absence of type annotations. It assigns the dy-
namic type, written ? for short, to any expressions (including vari-
ables) whose types are not available at compile time. For exam-
ple, the following is a portion of the generic add function already
mentioned in Section 1 and suppose we have available functions
+int : (int ∗ int) → int and +float : (float ∗ float) → float,

let meta generic add =
λx : type.

if x =τ int then 〈code ((?∗?)→ ?)〉≺+int�
else

if x =τ float then 〈code ((?∗?)→ ?)〉≺+float�
else ...

In the above program, we use 〈code ((?∗?)→ ?)〉 to explicitly
type-cast the type of each branch into the same type that con-
tains the dynamic type, and thus function generic add has type
type → code ((? ∗ ?) → ?). In gradual typing, the use of type
equality is replaced by the type consistency relation, written ∼.
The dynamic type is consistent with any ground types (or called
type constants) but two different ground types are inconsistent with
each other. Two function types are consistent if their domains and
codomains are consistent, respectively.

We use existential types (written ∃α.τ , where α is an existen-
tially quantified type variable that appears in type τ) to describe a
piece of residual object code fragment if its type information is not
complete (or unavailable) before meta evaluation. However, we do
not use the standard parametric interpretation of existentials, but in-
stead a non-parametric variation on existentials that generalizes the
dynamic type: for parametric polymorphism, the existence of ac-
tual types (called witness types) are statically guaranteed (they are
statically provided) for those existentially quantified type variables,
but instead for our non-parametric version, the existence of witness
types have to be dynamically checked, and if they exist then they
are dynamically generated. In the implementation, an object type
variable that is existentially quantified represents a piece of type in-
formation that is not available before meta evaluation, and it could
be instantiated into some actual type during meta evaluation. For
instance, the code fragment inside the following metaprogram has
type ∃α. code (α → α), and when function id is applied to true, α
is instantiated into int during meta evaluation.

let meta id = λx : bool. ≺λy : if x then int else bool. y� in
∼ (id true)

Existential types usually can capture more precise type informa-
tion than the dynamic type. Take the previous function generic add
as example. According to the dynamic typing, the residual code
in the branches could share the same type code ((? ∗ ?) → ?),
which means the generated function could be any binary func-
tion, i.e. code ((int ∗ bool) → string). However, in fact, function
generic add always generates a type-specific addition, which is a
binary operation and should have a type that can be represented
in a more precise form: ∃α. code ((α ∗ α) → α). This form repre-
sents the set of binary operations, the subset of binary functions,
thus precluding code ((int ∗ bool) → string).

Type consistency τm ∼ τm

(C-CON) γ ∼ γ (C-FUN)
τm1 ∼ τm3 τm2 ∼ τm4
τm1 → τm2 ∼ τm3 → τm4

(C-TYP) type ∼ type (C-EXT)
φ1(τ1) = φ2(τ2)

∃α.(code τ1) ∼ ∃β.(code τ2)

Naive subtyping τm <:n τm

(S-CON)
γ <:n γ

(S-FUN)
τm1 <:n τm3 τm2 <:n τm4
τm1 → τm2 <:n τm3 → τm4

(S-TYP) type <:n type (S-EXT)
τ1 = φ(τ2)

∃α.(code τ1) <:n ∃β.(code τ2)

Figure 6. Type consistency and naive subtyping relations for
metatypes, where φ is a substitution of free object type variables
for object types.

We define [τ/α](·) as the substitution of a free object type vari-
able for an object type in a metatype, an object type, a meta expres-
sion, or an object expression. So, [τ/α](·), written φ for short, is the
simultaneous substitution of free object type variables for object
types. Figure 6 shows the type consistency and the naive subtyping
[13] relations for the metatypes. For example, from rule C-EXT we
know metatypes ∃α. code (α → int) and ∃α, β. code (β → α) are
consistent because we can find two substitutions [β/α] and [int/α]
such that [β/α](α → int) = [int/α](β → α).

Naive subtyping is covariant in the domain of function types
(shown from rule S-FUN) instead of contravariant like ordinary

170

subtyping. Rule S-EXT defines the naive subtype relation of two
existential metatypes. Suppose we have two different existential
metatypes τm1 and τm2 , and if τm1 <:n τ

m
2 , then τm1 must be more

specific than τm2 . For example, we know that ∃α. code (α → α

) is a naive subtype of ∃α, β. code (α → β) because there is a
substitution [α/β] such that (α→ α) = [α/β](α→ β). Obviously,
the first one is more specific than the second one because the
first one refers to the set of unary operations whose domain and
codomain must have the same type while the second refers to any
kind of unary functions.

We say that τm is an upper bound of τm1 and τm2 if τm1 <:n τ
m

and τm2 <:n τm. Two metatypes do not necessarily have an up-
per bound. For example, int and bool do not have an upper bound.
However, any two existential metatypes must have at least one up-
per bound, that is ∃α. code α. Suppose τm1 and τm2 have some
upper bound(s), then we define τm1 ∨n τm2 as the least upper bound
of τm1 and τm2 .

τm is (τm1 ∨n τm2) iff

(i). (τm1 <:n τm) ∧ (τm2 <:n τm), and

(ii). ∀τmt . (τm1 <:n τmt) ∧ (τm2 <:n τmt)⇒ (τm <:n τmt).

For example, the following

∃α. code α,
∃α, β. code (α → β),
∃α. code (α → α)

are all the upper bounds of code (int → int) and code (bool → bool),
but only ∃α. code (α → α) is the least upper bound of the two and
it is also the most specific among all the upper bounds.

Figure 7 shows a selection of the typing rules for the object
language and the meta language (we omit some typing rules that
are conventional and they can be found in Garcia’s paper [6]).
For object-level functions, when the type annotation of a function
parameter is not a simple type (not yet evaluated), we allow the
parameter to take any type. Consider the following type rule, em is
some type expression but not a simple type, that is @τs.(τs = em),
therefore the type of x is allowed to be any object type τ1 that
allows the body e to type check.

Γ; Ψ ` em : type Γ; Ψ ` τ1 wf Γ, x : τ1; Ψ ` e : τ2

Γ; Ψ ` λx : em. e : τ1 → τ2

Further along in the meta computation, when the type of the param-
eter becomes a simple type, the following rule applies instead.

Γ, x : τs; Ψ ` e : τ

Γ; Ψ ` λx : τs. e : τs → τ

Typing rule M-CODE fully type checks the residual object expres-
sion inside the brackets and it introduces existential types as a vari-
ant of the gradual type for a piece of code by existentially quanti-
fying the object type variables appearing in the type of the object
expression. In typing rule M-CODE, function ftv collects all the
free object type variables appearing in the type environments and
returns a set of object type variables. Proposition α] ftv(Γ,Ψ)
specifiies that the set of the object type variables appearing in α is
disjoint with the set of the free object type variables appearing in Γ
and Ψ. When a piece of code fragment is escaped (see rule T-ESP),
we instantiate the existential type by substituting those quantified
type variables for some types that we guess or infer. In typing rule
M-IF, meta-level if expression can be dynamically typed as it al-
lows two branches to have different metatypes but the metatypes
should have the least upper bound.

Let −→ and −→m be the reduction relations for meta evalu-
ation of the object and the meta languages respectively. Let E be
an evaluation context whose hole is in an object context (say ob-
ject evaluation context for short) and Em be an evaluation context

Object-level type environment Γ ::= · | Γ, x : τ | Γ, α

Meta-level type environment Ψ ::= · | Ψ, x : τm

Well-formed object types Γ; Ψ ` τ wf

x : type ∈ Ψ

Γ; Ψ ` x wf Γ; Ψ ` γ wf

α ∈ Γ

Γ; Ψ ` α wf
Γ; Ψ ` τ1 wf Γ; Ψ ` τ2 wf

Γ; Ψ ` τ1 → τ2 wf

Well-formed object type sequence Γ; Ψ ` τ wf

τ = τ1...τn Γ; Ψ ` τ1 wf ... Γ; Ψ ` τn wf
Γ; Ψ ` τ wf

Type system for the object language Γ; Ψ ` e : τ

(T-ABS1)
Γ; Ψ ` em : type Γ; Ψ ` τ1 wf Γ, x : τ1; Ψ ` e : τ2

Γ; Ψ ` λx : em. e : τ1 → τ2

(T-ABS2)
Γ, x : τs; Ψ ` e : τ

Γ; Ψ ` λx : τs. e : τs → τ

(T-ESP)
Γ; Ψ ` em : ∃α.(code τ1) Γ; Ψ ` τ wf

Γ; Ψ ` ∼ em : [τ/α]τ1

Type system for the meta language Γ; Ψ ` em : τm

(M-TYPEOF)
Γ; Ψ ` em : ∃α.(code τ)

Γ; Ψ ` typeof em : type

(M-CODE)
Γ, α; Ψ ` e : τ α] ftv(Γ; Ψ)

Γ; Ψ ` ≺e� : ∃α.(code τ)

(M-APP)
Γ; Ψ ` em1 : τm1 → τm3 Γ; Ψ ` em2 : τm2 τm1 ∼ τm2

Γ; Ψ ` em1 em2 : τm3

(M-IF)

Γ; Ψ ` em1 : bool Γ; Ψ ` em2 : τm2 Γ; Ψ ` em3 : τm3
∃τm. τm = τm2 ∨n τm3

Γ; Ψ ` if em1 then em2 else em3 : τm

Figure 7. Selected rules from the type system

Single-step meta evaluation for E E[e] 7−→ E[e′]

e −→ e′

E[e] 7−→ E[e′]

Single-step meta evaluation forEm Em[em] 7−→ Em[em′] or error

em −→m em′

Γ; Ψ ` Em[em′] : τm

Em[em] 7−→ Em[em′]

em −→m em′

Γ; Ψ 6` Em[em′] : τm

Em[em] 7−→ error

em −→m em′

Γ; Ψ ` Em[em′] : τ

Em[em] 7−→ Em[em′]

em −→m em′

Γ; Ψ 6` Em[em′] : τ

Em[em] 7−→ error

Figure 8. Single-step meta evaluation

171

whose hole is in a meta context (say meta evaluation context for
short). Then single-step evaluation is defined in Figure 8. We omit
all the evaluation contexts and the reduction rules because they are
presented in Garcia’s paper [6]. The only difference is the symbol
used to represent meta evaluation context: in Garcia’s paper, meta
evaluation context is Es while ours is Em. We use object eval-
uation context to explain how evaluation context works and meta
evaluation context adopts the same mechanism. An object evalua-
tion context E can be turned into either an object language expres-
sion (i.e. λx : τs.

e
) or a meta language expression (i.e. ≺

e
�)

by plugging an object expression e into its hole, expressed with the
notation E[e]. Evaluation contexts are used specifically to define
program evaluation steps, for instance:

e −→ e′

E[e] 7−→ E[e′]

and the reduction relation e −→ e′ specifies how computations are
performed. Meta computation results in error as soon as a type
error is detected.

Given the formalization of the incremental type system for a
type-reflective metaprogramming language, we next reason about
its behavior, in particular to ensure that the type system is sound.

Theorem 1 (Progress).

1. If e is closed and Γ; Ψ ` e : τ , then e is a proper object code,
or there is some e′ such that e 7−→ e′, or e 7−→ error.

2. If em is closed and Γ; Ψ ` em : τm, then em is a meta value,
or there is some em′ such that em 7−→ em′, or em 7−→ error.

Proof. Straightforward induction on typing derivations.

Theorem 2 (Preservation).

1. If Γ; Ψ ` e : τ and e 7−→ e′, then Γ; Ψ ` e′ : τ ′.
2. If Γ; Ψ ` em : τm and em 7−→ em′, then Γ; Ψ ` em′ : τm′.

Proof. Straightforward induction on typing derivations.

Theorem 3 (Type Safety).

1. If Γ; Ψ ` e : τ and e 7−→∗ e′, then Γ; Ψ ` e′ : τ ′, and e′ is a
proper object code, or ∃e′′.e′ 7−→ e′′, or e′ 7−→ error.

2. If Γ; Ψ ` em : τm and em 7−→∗ em′, then Γ; Ψ ` em′ : τm′,
and em′ is a meta value, or ∃em′′.em′ 7−→ em′′, or em′ 7−→
error.

Proof. Using Progress and Preservation.

4. Implementation
In detail, our implementation of type-checking type-reflective
metaprograms is unification-based incremental type-checking. The
compiler first automatically inserts fresh non-indexed unification
variables and labels into the initial program. Next, it generates a set
of type constraints (type equalities) from the initial program dur-
ing type-checking. We normalize the constraints using unification.
If successful, we begin meta computation, and meanwhile update
and unify the constraints when more type information is avail-
able. Figure 9 shows the language syntax for the implementation
of unification-based incremental type-checking (please note that
we omit the parts that overlap with those in the language syntax
presented in Figure 5).

Unification variables, written κ for short, represent metatype
unification variables or object type unification variables, and also
represent non-indexed unification variables or indexed unification
variables. We distinguish indexed unification variables from non-
indexed ones to deal with the intricacy of dynamic typing, which

` labels
α, β, δ (meta or object) non-indexed unification variables
αn, βn, δn (meta or object) indexed unification variables
κ unification variables, indexed or non-indexed

object types
τ ::= x | γ | κ | τ → τ

object language
e ::= λx : (em)κ. e | (∼ em)` | · · ·

meta types
τm ::= ∃κ.(code τ) | · · ·

meta types for unification
σm ::= κ | τm

meta language
em ::= (if em then (em)κ1 else (em)κ2)κ3 |

((em)κ1)κ2 | · · ·
type constraint
cons ::= τ = τ | σm = σm

type constraint set
C ::= a set of type constraints

Figure 9. Selected kernel calculus for unification-based incremen-
tal type-checking

we will explain in more detail in the first example in the later
section. The equality relation (./) of unification variables is defined
in the following:

α ./ α
for any n
α ./ αn

m = n
αm ./ αn

κ ./ κ′

κ′ ./ κ

κ ./ κ′ κ′ ./ κ′′

κ ./ κ′′ @x.(κ ./ x)

We define {τ/κ}(·) as object type unification variable substitu-
tion: substituting κ for τ if κ is free in ·. The substitution can be
applied to meta expressions, object expressions, metatypes, and a
set of type constraints. The core part of the definition is as follows:

{τ/κ}(α) =

{
τ, if κ = α
κ, otherwise

{τ/κ}(αn) =

{
τ, if κ ./ αn
κ, otherwise

{τ/κ}(∃κ′.(code τ)) =

{
∃κ′.(code τ), if κ is in κ′

∃κ′.(code {τ/κ}τ), otherwise

So, the simultaneous substitution of object type unification vari-
ables for object types, written θ for short, is defined as:

{τ/κ}(·) ≡ {τ1/κ1}...{τn/κn}(·)
where n is the length of the sequence of object types to be sub-
stituted. Both metatype unification variable substitution, written
{τm/κ}(·), and the simultaneous substitution of metatype unifica-
tion variables, written {τm/κ}(·), adopt the same mechanism.

From the Surface Calculus to the Kernel. The surface calcu-
lus is close to Garcia’s calculus for the surface language. It is not
annotated with any unification variables and labels. When the sur-
face language is translated to (written) the kernel, we annotate
it with fresh non-indexed unification variables and labels. See the
following rules, where the expressions with subscript s represent
the expressions in the surface language.

ems em es e α is fresh

λx : ems . es λx : (em)α. e

ems em ` is fresh

∼ ems (∼ em)[`]

ems em ems
′ em′ ems

′′ em′′ α, β, δ are fresh

if ems then ems ′ else ems ′′ (if em then (em′)α else (em′′)β)δ

172

Please note that each non-indexed unification variable and each
label that initially appears in a kernel metaprogram is unique: each
unification variable used to bind the type of a function argument is
unique, each unification variable used in a meta-level if-expression
is unique, and each label initially attached to a code splice is also
unique. In the surface language, there are no existential types for
object code fragments. However, the metatypes include both code
and code τ , and we enable programmers to choose whether to type
a piece of object code fragment in a more specific form or not. For
instance, a programmer can type≺1� to be either code or code int,
but code fragment ≺λx : ems . x� (where ems is not some simple
type) has to be typed with code because it is dynamically typed.
When the surface language is translated into the kernel, code is
translated into ∃α. (code α) where α is fresh.

Object-level type environment Γ ::= · | Γ, x : τ

Meta-level type environment Ψ ::= · | Ψ, x : τm

Unification variable renaming R ::= · | R, κ 7→ αn

Variable renaming binding Σ ::= · | Σ, ` 7→ R

Constraint generation for the object language Γ; Ψ ` e : τ | C; Σ

(T-ABS1)

@τs.(τs = em) Γ; Ψ ` em : type | C1; Σ1

Γ, x : α; Ψ ` e : τ | C2; Σ2

Γ; Ψ ` λx : (em)α. e : α→ τ | C1 ∪ C2; Σ1,Σ2

(T-ABS2)
Γ, x : τs; Ψ ` e : τ | C; Σ

Γ; Ψ ` λx : τs. e : τs → τ | C; Σ

(T-ESP)

Γ; Ψ ` em : ∃κ.(code τ) | C; Σ
αn = gen vars(κ)

C′ = {αn/κ}C Σ′ = Σ, ` 7→ κ 7→ αn

Γ; Ψ ` (∼ em)[`] : {αn/κ}τ | C′; Σ′

Constraint generation for the meta language Γ; Ψ ` em : τm | C; Σ

(M-TYPEOF)
Γ; Ψ ` em : ∃κ.(code τ) | C; Σ

Γ; Ψ ` typeof em : type | C; Σ

(M-CODE)

Γ; Ψ ` e : τ | C; Σ
κ = uv(τ) ∪ uv(C)

Γ; Ψ ` ≺e� : ∃κ.(code τ) | C; Σ

(M-APP)

Γ; Ψ ` em1 : τm1 → τm3 | C1; Σ1

Γ; Ψ ` em2 : τm2 | C2; Σ2 C = C1 ∪ C2 ∪ {τm1 = τm2 }
Γ; Ψ ` em1 em2 : τm3 | C; Σ1,Σ2

(M-IF)

Γ; Ψ ` em1 : bool | C1; Σ1

Γ; Ψ ` em2 : τm2 | C2; Σ2 Γ; Ψ ` em3 : τm3 | C3; Σ3

τm = UBm(τm2 , τm3) Σ = Σ1,Σ2,Σ3

C4 = {α = τm2 } ∪ {β = τm3 } ∪ {δ = τm}
C = C1 ∪ C2 ∪ C3 ∪ C4

Γ; Ψ ` (if em1 then (em2)α else (em3)β)δ : τm | C; Σ

Figure 10. Selected constraint generation rules

Constraint generation version of the type system is defined in
Figure 10 (we omit some of the constraint generation rules). The
typing judgment Γ; Ψ ` e : τ | C; Σ is for the object language
and the typing judgement Γ; Ψ ` em : τm | C; Σ is for the meta
language. While we type-check an expression, we also generate a
set of type constraintsC and a set of mappings from labels to sets of
unification variable renames Σ. In the figure, uv is the function that

collects all the unification variables appearing in an object type, a
metatype, or a set of constraints. Function gen vars(κ) generates a
sequence of fresh unification variables (but not some arbitrary fresh
unification variables) for κ and it is defined as follows:

gen vars([]) = []

gen vars(α,κ′) = (αn,gen vars(κ′)) where n is fresh

gen vars(αn,κ′) = (αn′ ,gen vars(κ′)) where n′ is fresh

For rule T-ABS1, we learn that in a term abstraction, if a variable
is typed by some complex type expression, then we use a fresh
unification variable α as its replacement. So, when type-checking
the body, the compiler will generate a set of constraints contain-
ing those fresh unification variables. In contrast, if all variables are
simply-typed (see rule T-ABS2), we instead use the type-checking
approach for simply-typed lambda calculus that allows us to pro-
duce more precise typing. In rule M-IF, we use function UBm to
calculate a upper bound of two metatypes if they have one, but
the upper bound is not necessarily the least upper bound (we have
not found a good algorithm to calculate the least upper bound of
two metatypes). Following is the definition of function UBm and
the idea is to perform unification for metatypes and antiunification
[14] for object types. When running into antiunification, it returns
a fresh unification variable for two types that cannot be unified fur-
ther.

UBm(γ,γ) = γ
UBm(type,type) = type
UBm(τm1 → τm2 ,τm3 → τm4) =

T := UBm(τm1 ,τm3); S := UBm(τm2 ,τm4);
if T = fail or S = fail

return fail
return T→ S
UBm(∃κs.(code τ1),∃κt.(code τ2)) =

(τ , κ) := UBo(τ1,τ2); return ∃κ.(code τ)
UBm(,) = fail

UBo(x,x) = (x,[])
UBo(γ,γ) = (γ,[])
UBo(τ1 → τ2,τ3 → τ4) =

(τ5,κs) := UBo(τ1,τ3); (τ6,κt) := UBo(τ2,τ4);
return (τ5 → τ6,(κs, κt))
UBo(,) =

generate fresh α; return (α, [α])

The selected evaluation contexts and reduction rules are pre-
sented in Figure 11. Because typing information is required for
the typeof operation, we design the evaluation contexts that are
accompanied by object-level typing environment Γ. They are EΓ

and EmΓ , which are mutually recursive. The typing environment
extends when evaluating under a term abstraction. In Figure 11, we
use some helper functions, which we will explain next. Function
{vm/x}Σ(·) substitutes free meta variable x appearing in a meta
or an object expression for meta value vm. In the following, we give
the definition of meta variable substitution in a code splice, which
shows that we must rename the meta variables in the substituter:

{vm/x}Σ((∼ em)`) =

vm′ := renamem(Σ,`,vm); return (∼ {vm′/x}Σ(em))`

Function mapping(Σ,`,κ) substitutes unification variable κ for the
mapped unification variable if κ has mapping(s) in Σ. Sometimes,
the function performs a sequence of substitutions. Suppose ` is
`1, `2 and in mapping environment Σ, `1 has mapping κ 7→ κ′ and
`2 has mapping κ′ 7→ κ′′. So, κ is firstly mapped to κ′ and finally to
κ′′. Function renamem(Σ,`,em) renames the unification variables
in meta expression em and function renameo(Σ,`,e) renames the
unification variables in object expression e. The following shows
part of the definitions of these functions.

173

mapping(Σ,[],κ) = κ

mapping(Σ,(`, `′),κ) = mapping(Σ,`′,κ′)

where κ′ =

{
κ′, ` 7→ R ∈ Σ ∧ κ 7→ κ′ ∈ R;
κ, otherwise.

renamem(Σ,`,≺e�) =

e′ := renameo(Σ,`,e); return ≺e′�
renamem(Σ,`,(if em1 then (em2)κ1 else (em3)κ2)κ3) =

em1
′ := renamem(Σ,`,em1); κ1

′ := mapping(Σ,`,κ1);

em2
′ := renamem(Σ,`,em2); κ2

′ := mapping(Σ,`,κ2);

em3
′ := renamem(Σ,`,em3); κ3

′ := mapping(Σ,`,κ3);

return (if em1
′ then (em2

′)κ1
′

else (em3
′)κ2

′
)κ3

′

renameo(Σ,`,λx : (em)κ.e) =

em′ := renamem(Σ,`,em); e′ := renameo(Σ,`,e);

κ′ := mapping(Σ,`,κ); return λx : (em′)κ
′
.e′

renameo(Σ,`,(∼ em)`
′
) =

em′ := renamem(Σ,`,em); return (∼ em′)`′,`

5. Examples
In this section, we provide some simple examples to show how
our unification-based implementation works and moreover to show
the implementation can report type errors earlier with more precise
error messages, that is pointing to the place where type error origi-
nates. We suppose our kernel calculus is extended with meta-level
let binding and object-level pair constructor.

Example One. In many cases, the type of an object code fragment
depends on the environment in which it is used, i.e. the code frag-
ment in λx : type. ≺λy : x. y�. We can learn it from our constraint
generation rule for code escape, which generates a local constraint
set for each code splice by renaming the unification variables into
fresh ones. However, consider the following metaprogram, where
the type of f is independent from its use and after escaped, it cannot
be applied to an integer.

let meta f = ≺λx : (if true then bool else int)α. x� in
... // more let bindings

((∼ f)[`1] false, (∼ f)[`2] 0)

For Garcia’s type system, the type error is caught after type-
checking the generated code but our type system can catch it
earlier. According to rule M-CODE in Figure 10, f has type
∃α . code (α → α). Suppose α is renamed into α1 at the first code
splice and renamed into α2 at the second. After type-checking,
we have the type constraint set which contains α1 = bool and
α2 = int. During meta evaluation, when the type of x is evalu-
ated into type constant bool, we unify the constraint set after it is
extended with α = bool. Suppose we use the substitution-based
unification. Because substituting α for bool also substitutes αns for
any n, we get the type conflict, bool = int, and the meta evaluation
terminates (see rule EM-TC-FAIL). The error message points to
the type of x, the type expression attached by α, and could say that
the type of x is evaluated into bool but used as int.

Example Two. Let us revisit the example presented in section
one.

let meta f0 =
λt : type.

let meta id =
λx : bool. ≺λx : (if x then t else bool)α. x�

in

≺(∼ (id false))[`1] 1�
in

Evaluation context with meta language hole

EmΓ ::=
em
∅ | EmΓ [typeof

e
]Γ | EΓ[λx : (

e
)κ.e]Γ | EΓ[∼

e
] | · · ·

Evaluation context with object language hole

EΓ ::=
e
∅ | EmΓ [≺

e
�]Γ | EΓ[λx : γ.

e
]Γ,x:γ | · · ·

Meta reduction rules Γ; Σ ` em | C −→m em′ or error | C′

(TYPEOF)
Γ ` vm : code τs | C; Σ

Γ; Σ ` typeof vm | C −→m τs | C

(EM-APP) Γ; Σ ` (λx : τm.em) vm | C −→m {vm/x}Σ(em) | C

(EM-TCOERCE)
unify (C ∪ {κ1 = κ2}) = C′

Γ; Σ ` ((em)κ1)κ2 | C −→m em | C′

(EM-TC-FAIL)
unify (C ∪ {κ1 = κ2}) = fail

Γ; Σ ` ((em)κ1)κ2 | C −→m error | C

Object reduction rules Γ; Σ ` e | C −→ e′ or error | C′

(EC-ABS)
unify (C ∪ {κ = γ}) = C′

Γ; Σ ` λx : (γ)κ.e | C −→ λx : γ. e | C′

(EC-ABS-FAIL)
unify (C ∪ {κ = γ}) = fail

Γ; Σ ` λx : (γ)κ. e | C −→ error | C

Single-step evaluation rules for EmΓ

Γ; Σ ` em | C −→m em′ | C′

EmΓ [em] | C; Σ 7−→ EmΓ [em′] | C′; Σ

Γ; Σ ` em | C −→m error | C
EmΓ [em] | C; Σ 7−→ error | C; Σ

Single-step evaluation rules for EΓ

Γ; Σ ` e | C −→ e′ | C′

EΓ[e] | C; Σ 7−→ EΓ[e′] | C′; Σ

Γ; Σ ` e | C −→ error | C
EΓ[e] | C; Σ 7−→ error | C; Σ

Figure 11. Selected evaluation contexts and reduction rules

let meta f1 = ≺(∼ (f0 int))[`2]� in
...

Garcia’s type system reports the type error after the entire meta
evaluation but ideally we would like it to report the error just after
f0 is applied into int and the error message points to the place inside
the definition of f0, not generated code. According to the constraint
generation rules, id has type bool→ ∃α. code (α → α). At `1, sup-
pose α is renamed to α1 and the type of ≺(∼ (id false))[`1] 1�
could be some fresh unification variable β and the generated con-
straint set, written C1, is equal to {α1 → α1 = int→ β}. So, f0
has type type → ∃α1, β. (code β) and the constraint set is still C1.
At `2, suppose α1 is renamed to α2 and β is renamed to β1. So,
(∼ (f0 int))[`2] has type β1 and the constraint set, written C2, is up-

174

dated into {α2 → α2 = int→ β1} by {α2/α1}{β1/β}C1. During
meta evaluation, (f0 int) is evaluated into

let meta id =
λx : bool. ≺λx : (if x then int else bool)α. x�

in

≺(∼ (id false))[`1,`2] 1�

and please note that the label attached to ∼ (id false) is changed
into `1, `2. The above program is further evaluated into

≺(∼ (λ x : bool. ≺λx : (if x then int else bool)α2 . x�
false))[`1,`2] 1�

and please note that unification variable α is renamed to α2 as α is
first renamed to α1 by `1 and α1 is then renamed to α2 by `2. The
above program is further evaluated into

≺(∼ (≺λ x : (if false then int else bool)α2 . x�))[`1,`2] 1�

and further evaluated into

≺(∼ (≺λ x : (bool)α2 . x�))[`1,`2] 1�

Now, we put the constraint α2 = bool into constraint set C2. Of
course, we can discover the type conflict, bool = int, by unifying
the new constraint set and because of the type conflict, the meta
valuation terminates. The type error message points to the type of
object variable x, which is desired.

6. Related Work
There are several threads of related work concerning the type-
checking of the expressions whose types may depend on compu-
tation.

C++ templates and Template Haskell [5] are the alternative
metaprogramming languages, but their type systems have the sim-
ilar issue with type error tracking. For C++ templates, object-level
fragments are type-checked before template instantiation. So, the
C++ type system can catch some type errors earlier than Gar-
cia’s type system: it will reject the code ≺true + 1�. However,
templates are not fully type-checked before instantiation: (1) type-
checking is not performed at the variables whose types depend on
template type variables; (2) type-checking is not performed at the
places of code generation. Here we use the example that frequently
used by other papers about metaprogramming: the power function
that performs partial evaluation at compile time. The below is the
power function template in C++. We mis-define the function: powN
has the argument of type string instead of int and it has no base case
(when N = 0).

template<int N>
int powN(string m) { return powN<N−1>(m) ∗ m; };

template int powN<20>(string);

Ideally, we would like the C++ compiler to report the type error
without doing any instantiation (string does not support multipli-
cation). On the contrary, the compiler goes into an infinite loop of
instantiation instead of reporting the error. For Template Haskell,
object-level expressions are type-checked before meta evaluation
but their types are hidden at the meta level. This mechanism en-
ables the Haskell compiler to accept more expressive metapro-
grams such as the generic add function presented previously. When
type-checking a top-level splice (here refers to those splices not ap-
pearing inside a pair of quasi-quotes [| |]), say $e (dollar sign means
splice), the Haskell compiler has to first meta-evaluate e and then
type-check the evaluation result. This strategy may not only cause
the compiler to catch type errors late (it also goes into a loop with-
out reporting the error for the powN function) but also report impre-
cise messages (pointing to a wrong place). Consider the following
case:

a = [| ”A” |];
b = [| ”B” |];
ab = [| $a ∗ $b |]; // error originates at here
...
s = $ab; // top level splice; error message points here

In the above program, the type error is that string does not support
multiplication, which refers to the 3rd line. However, the Haskell
compiler returns the error message that points to the top level
splice, the place could be far away from where the error originates.

Some programming languages use dependent types to describe
those programs whose types are dependent on terms. Cayenne
[15] supports the manipulation of types as normal data. It has
dependent types, which contain the functions that generate types,
but usually those functions have to be manually written. Type-
checking for Cayenne programs involves computations, which may
overlap with program computation. So, the type system may take
huge computation overhead. In contrast, our type system takes
advantage of meta evaluation such that type-checking and meta-
evaluation interleave. The type system of Cayenne is modular,
which enables us to write safe programs, but it restricts the set
of program we can write. In contrast, our type system ensures the
expressiveness of metaprograms.

Some other dependently typed programming languages, such as
DML [16], ATS [17], and Concoqtion [18], have to use some ex-
ternal proof assistant tools (i.e. theorem provers). Concoqtion ex-
tends from MetaOCaml, which has meta-level expressions embed-
ded in types (alternatively called indexed types). It can write ex-
pressive programs with pattern-matching (their types are dependent
on datatype constructors) using the variant of GADTs [19]. GADTs
are regarded as a limited version of dependent types. Though we
can use GADTs to simulate if-expressions returning values of dif-
ferent types, in a way very similar to how one would do that us-
ing dependent types in Cayenne, yet it may have huge overhead of
type-level computation. The type system of Concoqtion is imple-
mented using the theorem prover Coq, which handles the type-level
computation during type-checking. For such type system, the ease
of programming is weakened as programmers may need to write
proofs.

Some program analysis tools also provide solutions on how to
type-check dynamically-typed programs. Mix [20] is a program
analysis tool that mixes type-checking (for statically typed program
blocks) with symbolic execution (for dynamically typed program
blocks). With an SMT solver, it performs path sensitive analysis on
a dynamically typed if-expression. It symbolically executes both of
the branches and ensures that both of the execution paths do not
generate type errors. Of course, SMT solving can be undecidable
when the size of a program block for symbolic execution is too
large.

7. Conclusion
Because type-reflective metaprograms have type dependencies, ap-
plying the MetaML-style modular type-checking approach to type-
check those programs could compromise the flexibility of metapro-
gramming. In this paper, we design a new type-checking approach,
incremental type checking, that can detect type errors in a type-
reflective metaprogram as early as possible without sacrificing flex-
ibility. Our approach is more efficient compared with other ap-
proaches by avoiding unnecessary meta evaluation overhead.

In the future, we would like to extend Garcia’s calculus with
object-oriented features, such as class reflection, i.e. iteration over
class methods and class fields, class generation that generates de-
rived classes from unknown base classes, etc. Class reflection has
already developed in Java as an important and new feature. In C++,
templates themselves are a useful tool for class generation but they
do not have the power to inquire the inner structure of a class. Also,

175

class reflection at the meta level is not often explored and discussed
by previous papers. So, it would be interesting to discover how
metaprogramming can benefit class reflection and it would also be
meaningful to develop a calculus that would surpass the power of
C++ templates for class reflection.

Acknowledgments
This work was supported by the NSF under grant CCF-0702362.

References
[1] David Abrahams and Aleksey Gurtovoy. C++ Template

Metaprogramming: Concepts, Tools, and Techniques from
Boost and Beyond. Addison-Wesley Professional, 2004.

[2] Andrei Alexandrescu. Modern C++ design: generic program-
ming and design patterns applied. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2001.

[3] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative
programming: methods, tools, and applications. ACM
Press/Addison-Wesley, 2000.

[4] Walid Taha and Tim Sheard. Multi-stage programming
with explicit annotations. In PEPM ’97: Proceedings of
the 1997 ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation, pages 203–217,
New York, NY, USA, 1997. ACM Press.

[5] Tim Sheard and Simon Peyton Jones. Template metaprogram-
ming for Haskell. In ACM SIGPLAN Haskell Workshop 02,
pages 1–16, 2002.

[6] Ronald Garcia and Andrew Lumsdaine. Toward foundations
for type-reflective metaprogramming. In GPCE ’09: Pro-
ceedings of the eighth international conference on Generative
programming and component engineering, pages 25–34, New
York, NY, USA, 2009. ACM.

[7] Ronald Garcia. Static Computation and Reflection. PhD
thesis, Indiana University, September 2008.

[8] Taha Walid. Multi-stage programming: Its theory and
applications. Technical report, 1999.

[9] Walid Taha and Michael Florentin Nielsen. Environment
classifiers. In POPL ’03: Proceedings of the 30th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 26–37, New York, NY, USA, 2003. ACM
Press.

[10] Guy L. Steele, Jr. Common LISP: the language (2nd ed.).
Digital Press, Newton, MA, USA, 1990.

[11] Jeremy G. Siek and Manish Vachharajani. Gradual typing
with unification-based inference. In Dynamic Languages
Symposium, July 2008.

[12] Jeremy Siek and Walid Taha. Typing for objects. In European
Conference on Object-Oriented Programming, 2007.

[13] Philip Wadler and Robert Bruce Findler. Well-typed programs
can’t be blamed. In In workshop on Scheme and functional
programming, pages 15–26, 2007.

[14] Ian Lynagh. Typing template haskell: Soft types. In GPCE
W2: Second MetaOCaml Workshop, 2005.

[15] Lennart Augustsson. Cayenne—a language with dependent
types. In ICFP ’98: Proceedings of the third ACM SIGPLAN
international conference on Functional programming, New
York, NY, USA. ACM.

[16] Hongwei Xi and Frank Pfenning. Dependent types in practical
programming. In Proceedings of the 26th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages,
pages 214–227, 1999.

[17] Hongwei Xi. Applied type system. In post-workshop
Proceedings of TYPES, Lecture Notes in Computer Science,
3085, 2004.

[18] Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha.
Concoqtion: indexed types now. In Workshop on Partial
Evaluation and Semantics-Based Program Manipulation,
2007.

[19] Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded
recursive datatype constructors. In Proceedings of the 30th
ACM SIGPLAN Symposium on Principles of Programming
Languages, pages 224–235, New Orleans, January 2003.

[20] Khoo Yit Phang, Bor-Yuh Evan Chang, and Jeffrey S. Foster.
Mixing type checking and symbolic execution. In ACM
SIGPLAN 2000 Conference on Programming Language
Design and Implementation, 2010.

176

	Introduction
	Incremental Type-Checking
	Type System
	Implementation
	Examples
	Related Work
	Conclusion

