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Abstract
Generic programming has emerged as an important technique for
the development of highly reusable and efficient software libraries.
In C++, generic programming is enabled by the flexibility of tem-
plates, the C++ type parametrization mechanism. However, the
power of templates comes with a price: generic (template) libraries
can be more difficult to use and develop than non-template libraries
and their misuse results in notoriously confusing error messages.
As currently defined in C++98, templates are unconstrained, and
type-checking of templates is performed late in the compilation
process, i.e., after the use of a template has been combined with its
definition. To improve the support for generic programming in C++,
we introduce concepts to express the syntactic and semantic behav-
ior of types and to constrain the type parameters in a C++ template.
Using concepts, type-checking of template definitions is separated
from their uses, thereby making templates easier to use and eas-
ier to compile. These improvements are achieved without limiting
the flexibility of templates or decreasing their performance—in fact
their expressive power is increased. This paper describes the lan-
guage extensions supporting concepts, their use in the expression
of the C++ Standard Template Library, and their implementation in
the ConceptGCC compiler. Concepts are candidates for inclusion
in the upcoming revision of the ISO C++ standard, C++0x.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Abstract data types;
D.3.3 [Programming Languages]: Language Constructs and Features—
Polymorphism; D.2.13 [Software Engineering]: Reusable Software—
Reusable libraries

General Terms Design, Languages

Keywords Generic programming, constrained generics, paramet-
ric polymorphism, C++ templates, C++0x, concepts

1. Introduction
The C++ language [25, 62] supports parametrized types and func-
tions in the form of templates. Templates provide a unique com-
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bination of features that have allowed them to be used for many
different programming paradigms, including Generic Program-
ming [3,44], Generative Programming [11], and Template Metapro-
gramming [1, 66]. Much of the flexibility of C++ templates comes
from their unconstrained nature: a template can perform any op-
eration on its template parameters, including compile-time type
computations, allowing the emulation of the basic features required
for diverse programming paradigms. Another essential part of tem-
plates is their ability to provide abstraction without performance
degradation: templates provide sufficient information to a com-
piler’s optimizers (especially the inliner) to generate code that is
optimal in both time and space.

Consequently, templates have become the preferred implemen-
tation style for a vast array of reusable, efficient C++ libraries [2,6,
14,20,32,54,55,65], many of which are built upon the Generic Pro-
gramming methodology exemplified by the C++ Standard Template
Library (STL) [42,60]. Aided by the discovery of numerous ad hoc
template techniques [28,46,56,66,67], C++ libraries are becoming
more powerful, more flexible, and more expressive.

However, these improvements come at the cost of implemen-
tation complexity [61, 63]: authors of C++ libraries typically rely
on a grab-bag of template tricks, many of which are complex and
poorly documented. Where library interfaces are rigorously sepa-
rated from library implementation, the complexity of implementa-
tion of a library is not a problem for its users. However, templates
rely on the absence of modular (separate) type-checking for flexi-
bility and performance. Therefore, the complexities of library im-
plementation leak through to library users. This problem manifests
itself most visibly in spectacularly poor error messages for simple
mistakes. Consider:

list<int> lst;
sort(lst.begin(), lst.end());

Attempting to compile this code with a recent version of the GNU
C++ compiler [17] produces more than two kilobytes of output,
containing six different error messages. Worse, the errors reported
provide line numbers and file names that point to the implementa-
tion of the STL sort() function and its helper functions. The only
clue provided to users that this error was triggered by their own
code (rather than by a bug in the STL implementation) is the fol-
lowing innocuous line of output:

sort_list.cpp:8: instantiated from here

The actual error, in this case, is that the STL sort() requires a
pair of Random Access Iterators, i.e., iterators that can move any
number of steps forward or backward in constant time. The STL



sort_list.cpp: In function ’int main()’:
sort_list.cpp:8: error: no matching function for call to ’sort(std::_List_iterator<int>, std::_List_iterator<int>)’
.../stl_algo.h:2835: note: candidates are: void std::sort(_Iter, _Iter) [with _Iter = std::_List_iterator<int>]
sort_list.cpp:8: note: no concept map for requirement ’std::MutableRandomAccessIterator<std::_List_iterator<int> >’

Figure 1. ConceptGCC error message produced when attempting to compile a call to the STL sort() with list iterators.

list container, however, provides only Bidirectional Iterators, which
can move forward or backward only one step at a time. Random
Access Iterator and Bidirectional Iterator are concepts used in the
design and documentation of the STL. A concept describes a set
of requirements that a generic algorithm (implemented as a C++
function template) places on its template parameters. Concepts
have no representation within the C++ language, so a user’s failure
to meet the concept requirements of an STL algorithm will only be
detected when the compiler attempts to instantiate the algorithm.

The absence of modular type-checking for templates also means
that the definitions of templates are not type checked indepen-
dently of their uses. This causes serious problems for implementers
of generic libraries because bugs can go uncaught prior to de-
ployment. In particular, it is common for inconsistencies to exist
between the documented type requirements and the implementa-
tion of a function template. A form of separate type-checking can
be somewhat approximated using existing C++ language mecha-
nisms [56]. However, with this approach (“concept checking” or
“constraints checking”), concepts are not language entities. As a
result, concept-checking libraries are quite difficult to design, must
be manually verified, and suffer from portability problems.

Modern template libraries rely on a set of naming and documen-
tation conventions to express their fundamental design ideas, such
as the Bidirectional Iterator and Random Access Iterator abstrac-
tions, and state the requirements of generic algorithms in terms of
those ideas. The root cause of most of the problems with templates
is that these fundamental design ideas cannot be directly expressed
using C++98 templates, so compilers cannot detect errors early and
cannot report them in the terms used by the library documentation.
Direct language support for concepts addresses this problem.

This paper describes a set of extensions to C++ that directly
supports the notion of concepts; thus providing greater expressive
power (e.g., in overloading) and improved modular type checking
for C++ templates. For example, concepts directly support the ex-
pression and checking of concepts such as Bidirectional Iterator
and Random Access Iterator. Using concepts we can place con-
straints on template parameters, enabling modular type-checking
for templates. Having concepts directly expressible in C++ makes
templates easier to write and use. For example, instead of two kilo-
bytes of irrelevant information, our experimental compiler support-
ing concepts, ConceptGCC [19], produces the error message shown
in Figure 1 when given the erroneous STL code above.

Besides its brevity, there are several improvements in this error
message. Most importantly, the error message (there is only one)
refers directly to the user’s code, at the erroneous call to sort(). The
user is informed that no sort() function matches, and that the cause
of the failure is an unsatisfied requirement for the Mutable Random
Access Iterator concept, i.e., a list iterator is not a Random Access
Iterator, and therefore sort() cannot be used. By completely type-
checking the call to sort() at the call site, the problem with STL
implementation details “leaking” into the user’s error message has
been eliminated.

The improvement to error messages is a result of fundamental
changes to the way templates are specified: the requirements of
a (templated) algorithm on its arguments are made explicit. This
allows us to reason about template code and (almost incidentally)
gives the compiler the information it needs to produce radically

better error messages early. It also gives information needed to
improve overloading.

The primary challenge in designing a system of constrained
generics for C++ templates is in providing language features that
support current successful uses of the C++ template system without
compromising the ideal of modular type checking for templates
or damaging performance. We focus on supporting the Generic
Programming paradigm, which has been used to develop many
generic C++ libraries.

Early discussions on constrained generics for C++ can be found
in [61]. At the time, no solution was found to the stated problem of
providing constraints without unacceptably limiting flexibility or
performance. The objective that standard C++ should be extended
with constrained generics was made explicit in 2003 with a report
laying out the main design goals [63]. There are many existing
programming languages that support “generics” in some form or
other. Early attempts at building the Standard Template Library
focused on Scheme, then Ada [43] before settling on C++. More
recently, we evaluated many more languages, including C#, Java,
Cecil, ML, and Haskell, based on their ability to express the ideas
of Generic Programming [15, 16]. Building on these results and
the experience gained from the Generic Programming language
G [57–59], we designed concepts with the following goals in mind:

• To provide direct support for Generic Programming, so that pro-
grams and libraries developed with the Generic Programming
methodology can be expressed clearly and without relying on
“template tricks” or documentation conventions.

• To make templates easier to write and easier to use by mak-
ing a template’s requirements on its arguments explicit using
concepts, thereby enabling modular type-checking and making
template overloading more robust.

• To provide a clear transition path from today’s unconstrained
templates to templates constrained by concepts. Libraries built
with the Generic Programming methodology should be up-
gradeable to use concepts without breaking source compatibil-
ity for the vast majority of user programs.

• To do so without making programs more verbose, less flexible,
or less efficient.

• To retain compatibility with C++98, both by not breaking ex-
isting code and by not introducing language rules that differ
significantly from existing rules.

The work reported here is part of a large on-going effort led
by the authors to provide concepts for C++0x, the next ISO C++
standard [12, 22, 23, 53, 64]. This paper reports the first implemen-
tation of constrained generics for C++ using concepts, and the first
extensive evaluation of their use in developing generic libraries.
The primary aim of the resulting language and library, collectively
called ConceptC++, is to gain practical experience with the use of
concepts.

Our goals are ambitious and, in some cases, contradictory. We
report elsewhere [27] on the inherent trade-off between modular
type checking and the Generic Programming notion of specializa-
tion. Specialization will be discussed in Section 2 as part of a gen-
eral introduction to Generic Programming. Section 3 presents the
language extensions and Section 4 gives an overview of their im-



plementation in our compiler. Finally, we evaluate the effective-
ness of our language support for concepts by providing a concept-
enhanced STL implementation, both from the perspective of library
users and library developers. This analysis, along with a discussion
of the practical impact of our “nearly-modular” type checking for
templates, will be discussed in Section 5.

2. Generic Programming
Generic programming is a systematic approach to designing and
organizing software that focuses on finding the most general (or
abstract) formulation of an algorithm together with an efficient
implementation [30]. The primary goal of generic programming
is to make algorithms more widely applicable, and thus generic
programming is sometimes referred to as algorithm-oriented [45].

2.1 Lifting and Abstraction
The generic programming process derives generic algorithms from
families of concrete (non-generic) implementations that exhibit
some commonality. We lift away unnecessary requirements on
types from an implementation, thereby raising the level of ab-
straction. Consider the following two concrete implementations
of sum(). The first computes the sum of doubles stored in an array;
the second computes the sum of integers in a linked list.

double sum(double∗ array, int n) {
double s = 0;
for (int i = 0; i < n; ++i )

s = s + array[i];
return s;

}
struct node { node∗ next; int data; };
int sum(node∗ first, node∗ last) {

int s = 0;
for (; first != last; first = first→ next)

s = s + first→ data;
return s;

}

Abstractly, both implementations do the same thing: traverse a col-
lection of elements and sum the values. However, these implemen-
tations impose additional requirements (ones that are unnecessary
for the purposes of summation). In the first implementation, the el-
ements must be of type double and be stored in an array. In the
second implementation, the elements must be of type int and be
stored in the node∗ representation of a linked list.

Fundamentally, summing the elements in a collection only re-
quires the ability to visit the elements of the collection and add
elements. A generic algorithm should therefore be able to work
correctly with any collection of elements supporting traversal and
the addition of elements. Using concepts, we can specify these re-
quirements:

template<InputIterator Iter>
where Addable<Iter::value type> &&
where Assignable<Iter::value type>

value type sum(Iter first, Iter last, Iter::value type s) {
for (; first != last; ++first)

s = s + ∗first;
return s;

}

The sum() algorithm is implemented as a function template, with
the parameter Iter for the iterator type. The algorithm can be used
with any type that is an Input Iterator, i.e., it supports the ++ opera-
tion for moving from one element to another, the ∗ operation for ac-
cessing a value, and != for testing iterator positions. This constraint
for the template parameter Iter is stated in the template parameter
list. Similarly, that iterator’s element type, Iter::value type, must

support addition and assignment, as stated in the separate where
clause. Section 3 will explain the syntax and semantics of concepts
and their use as constraints in more detail.

Suppose we broaden the family of concrete implementations to
include computing the product of a list of integers:

int product(node∗ first, node∗ last) {
int s = 1;
for (; first != last; first = first→ next)

s = s ∗ first→ data;
return s;

}

The sum() algorithm can be further generalized to to compute
products by replacing addition with parameters for an arbitrary
binary operator and initial element. With this change, we arrive at
an implementation of the STL accumulate() algorithm:

template<
tempInputIterator Iter,
tempBinaryOperation<Iter::value type, Iter::value type> Op>

where Assignable<Iter::value type, Op::result type>
Iter::value type

accumulate(Iter first, Iter last, Iter::value type s, Op op) {
for (; first != last; ++first)

s = op(s, ∗first);
return s;

}

We can use the accumulate() algorithm with arrays, linked lists,
or any other types that meet the requirements for Input Iterator and
Binary Operation:

double x[10];
double a = accumulate(x, x+10, 0.0, plus<double>());

node∗ n = cons(1, cons(2, cons(2, null )));
int s = accumulate(n, null , 1, multiplies <int>());

int p = sum(n, null, 0, plus<int>());

To review, we replaced requirements for particular types, such as
double∗ or node∗, with requirements for certain properties, such
as InputIterator and BinaryOperation. We have specified policy—
but we have not specified how these operations must be carried out.
The lifting process can be summarized graphically as follows:

accumulate a range of Ts
(requires: iterator range,

op(T, T))

product of a list
of int

sum of a range of Ts
(requires: iterator range,

T + T)

sum of a list
of int

sum of an array
of double

At the bottom of this figure lie the concrete implementations
that form the basis of the lifting process. As we move further
up the figure, we find increasingly generic implementations that
subsume the concrete implementations below, each step removing
unnecessary requirements. The lifting process is iterative, and at its
limit lies the ideal of an algorithm: the generic implementation that
subsumes all concrete implementations of the algorithm, specifying
the minimum set of requirements to achieve maximum reusability
without sacrificing efficiency.
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Figure 2. Refinement relationships among the STL iterator concepts, where an edge A → B is read as “A refines B.”

2.2 Algorithm Specialization
In addition to building highly reusable algorithms, Generic Pro-
gramming is concerned with building highly efficient algorithms.
There is a natural tension between reusability and efficiency be-
cause sometimes greater efficiency (a better algorithm) is enabled
by additional requirements (and adding requirements decreases op-
portunities for reuse). We refer to such algorithms as “specialized.”
When specialized algorithms provide better performance, we im-
plement them in addition to the more generic algorithm and pro-
vide automatic dispatching to the appropriate algorithm based on
the properties of the input types. Note that we do not give up on
genericity: we still program in terms of properties of types and not
in terms of particular types.

A simple, but important, example of algorithm specialization is
the STL advance() function which moves an iterator forward n
steps. The following shows two versions of advance(), the second
more specialized than the first. There is a slow advance() for
iterators that only provide increment, and a fast advance() for
iterators that can jump forward arbitrary distances in constant time
(using the += operator).

template<InputIterator Iter>
void advance(Iter& i, difference type n)
{ while (n−−) ++i; }

template<RandomAccessIterator Iter>
void advance(Iter& i, difference type n)
{ i += n; }

At a call to advance(), the most specific overload is selected.
Consider:

list<int> l;
advance(l.begin(), n); // dispatches to slow advance

vector<int> b;
advance(v.begin(), n); // dispatches to fast advance

The first call to advance() dispatches to the version for Input Iter-
ator because that is the only overload that matches: a list iterator is
not a Random Access Iterator. The second call to advance() could
potentially dispatch to either version, because a vector iterator is
both an Input Iterator and a Random Access Iterator. Since Random
Access Iterator includes the requirements of Input Iterator, the sec-
ond advance() is the more specialized algorithm, and is chosen in
favor of the first.

2.3 Concepts
Generic algorithms are specified in terms of abstract properties of
types, rather than in terms of particular types. In the terminology of
generic programming, a concept is the formalization of an abstrac-
tion as a set of requirements on a type (or on a set of types, integers,
operations, etc.) [3,31]. A type that implements the requirements of
a concept is said to model the concept. These requirements may be
syntactic, semantic, or performance-related. The requirements for
operators ++ and ∗ on iterators are examples of syntactic require-
ments. In the documentation of C++ libraries, such requirements

are typically expressed in the form of valid expressions (also called
use patterns); ConceptC++ allows the expression of requirements
on operations directly in the language. The second kind of syn-
tactic requirement is associated types: types that collaborate in the
concept operations and that are determined by the modeling type.
For example, the associated value and distance types of an itera-
tor, which state the type of value that the iterator points to and the
type that can be used to measure distances between iterators, re-
spectively.

An example of a semantic requirement is that iterator equal-
ity should imply that dereferencing yields the same value: i == j
implies ∗i == ∗j. The requirement that operator += execute in
constant time is a performance requirement of the Random Access
Iterator concept. We do not include support for semantic or perfor-
mance requirements, though such support is under investigation.

A concept may incorporate the requirements of another concept,
in which case the first concept is said to refine the second. Families
of related concepts, called concept taxonomies, form a strong orga-
nizational basis for many generic libraries. In particular, concepts
can describe the essential abstractions for an entire domain, pro-
vide common building blocks for implementing a large number of
generic algorithms, and lead to a uniform interface to the generic
algorithms within the domain. Figure 2 illustrates the concept tax-
onomy for the C++ Standard Template Library iterator concepts.

Often, a concept is parametrized over more than just one type:
commonly a concept involves multiple types and specifies their
relationships. For example, the algebraic concept of a Vector Space,
involves two types, the vector type and the scalar type. Similarly, a
concept can be parametrized by integer values and operations.

3. Language Support for Concepts
ConceptC++ translates the ideas of Generic Programming into a
small set of C++ language extensions. Generic algorithms and data
structures are expressed as templates with constraints on their tem-
plate parameters. The constraints are expressed in terms of concepts
in where clauses or the template parameter list. A concept is an
interface-like definition of a set of requirements (associated types,
signatures), while a concept map definition provides a mechanism
for declaring that a type satisfies a concept and for mapping a type
to requirements (concepts) by providing required operations and
associated types. We can illustrate the major concept features using
the standard library min function:

concept LessThanComparable<typename T> {
bool operator<(T x, T y);

}
template<typename T>
where LessThanComparable<T>
const T& min(const T& x, const T& y) {

return x < y? x : y;
}

The first definition specifies the concept Less Than Comparable: any
type T that models Less Than Comparable must provide a less-than



operator on two T objects that returns a boolean result. The second
definition specifies a “constrained” function template min(), which
can only be applied to types T that model Less Than Comparable.
That is, we can find smaller of two objects using min provided we
can compare them by <.

However, there are notions of ”smaller” that are not conven-
tionally expressed using <. For example, for complex numbers the
distance from (0,0), abs, is for some algorithms suitable for com-
parisons. We can map abs for a complex number, dcomplex, to the
< required by min:

concept map LessThanComparable<complex> {
bool operator<(complex a, complex b) {

return abs(a)<abs(b);
}

};
int f(dcomplex a, dcomplex b) {

dcomplex& x = min(a, b);
// ...

}

The first definition is a concept map, which establishes that the
type dcomplex is a model of the Less Than Comparable concept
when we use the supplied <. Finally, the f() function illustrates
a call to min(): at the call site, the type T is bound to dcomplex
and the concept map LessThanComparable<dcomplex> satisfies
min()’s Less Than Comparable constraint.

3.1 Constraining Templates with Concepts
The syntax of C++ template declarations (and definitions) is ex-
tended to include a where clause consisting of a set of requirements.
Any template that contains a where clause is called a constrained
template. The following is a simple example of a where clause con-
taining two requirements:

template<typename T>
where Assignable<T> && CopyConstructible<T>
void swap(T& a, T& b) {

T tmp(a); // copy using constructor
a = b; // copy using assignment
b = tmp;

}

A concept name applied to a type, e.g., Assignable<T>, indicates
that T must meet the requirements of the Assignable concept, e.g.,

int a = 10;
int b = 20;
swap(a,b);

Here, int must be Assignable (as well as Copy Constructible). Thus,
the where clause, ensures that swap() can only be instantiated on
a type that meets the requirements of the Assignable and Copy Con-
structible concepts. A where clause may also be used to constrain
class templates and members of class templates. For example, the
list template requires the element type to model Copy Constructible.
Furthermore, the sort() member function imposes the further re-
quirement that T model the Less Than Comparable concept:

template<CopyConstructible T>
class list {
public:

where LessThanComparable<T> void sort();
};

Note that the conventional abbreviation for single-type concepts

template<CopyConstructible T>

is equivalent to

template<typename T> where CopyConstructible<T>

A concept constraint applies the requirements of a concept to a
template parameter (or a set of template parameters). In doing so,
it serves two roles:

1. It acts as a predicate: when a template identifier is used, all
of the requirements in the template’s where clause must be
satisfied. For example, ”does int∗ meet the requirements of a
Forward Iterator?”

2. It provides a scope for the resolution of names used in a tem-
plate. For example, ”what is the value type of int∗ when it is
acting as a Forward Iterator?”

The ConceptGCC error message shown in Section 1 is the result
of a type error when concepts are used in the first role. At the call
to sort(), the compiler determines whether the actual type (a list
iterator) meets the requirements of the concept stated in sort()’s
where clause (MutableRandomAccessIterator<Iter>); since this
is not the case, the error message shown in Figure 1 is emitted.

When the requirements of a where clause are used in the second
role, they introduce assumptions into the context of compilation.
For example, in the previous swap() example, the first line in the
body of swap() uses the copy constructor for type T, the existence
of which is guaranteed by CopyConstructible<T> in the where
clause. Likewise, the two assignments in the body of swap() type-
check because of Assignable<T>.

Type checking fails when neither the requirements of a tem-
plate nor the enclosing scope provide suitable declarations for op-
erations used in the template. For example, consider the following
(erroneous) implementation of an STL-like find() algorithm:

template<InputIterator Iter, typename Val>
where EqualityComparable<Iter::value type, Val>
Iter find(Iter first, Iter last, Val v) {

while (first < last && !(∗first == v))
++first;

return first;
}

The error in this example occurs in the comparison first < last:
the Input Iterator concept (see Figure 6) provides comparison via
== and !=, but not ordering via <. With unconstrained C++
templates, this error would go unnoticed until find() is instantiated
with iterators that do not support <. Using concepts, the error is
detected at template definition time and ConceptGCC produces the
error message shown in Figure 3.

Note the Iter::value type in the definition of find. That is an
abbreviation of InputIterator<Iter>::value type, meaning “find
the name value type in the concept map InputIterator<Iter>.”
Concept maps are explained in 3.4.

3.1.1 Same-type Constraints
All the concepts mentioned so far are “user-defined”; that is, they
are defined using the facilities described in Section 3.2. The only
built-in concept is SameType, which requires that two type expres-
sions produce equivalent types. This concept is built-in because it
plays a special role in the type checking of constrained templates.
When the constraint SameType<S, T> appears in a where clause
(where S and T are arbitrary type expressions), the type checker
assumes that S and T denote the same type. For example, the STL
iter swap() template requires that the value types of the two itera-
tors be equivalent.

template<MutableForwardIterator Iter1,
template<MutableForwardIterator Iter2>
where SameType<Iter1::value type, Iter2::value type>
void iter swap(Iter1 a, Iter2 b) {

swap(∗a, ∗b);
}



find.cpp: In function ’Iter find(Iter, Iter, Val)’:
find.cpp:7: error: no match for ’operator<’ in ’first < last’
.../concepts.h:169: note: candidates are:
bool std::SignedIntegral<Iter::difference_type>::operator<(const Iter::difference_type&, const Iter::difference_type&)

Figure 3. ConceptGCC error message produced when attempting to compile the erroneous definition of find().

When the type checker considers the call swap(∗a,∗b), it knows
that the type of ∗a and the type of ∗b are the same type, which
allows template argument deduction for swap() to succeed.

The iter swap function also illustrates how one template may
use another template. In this case, swap() is implicitly instantiated
on the iterator’s value type and swap() requires Copy Constructible
and Assignable. The Mutable Forward Iterator concept includes the
requirement that its value type satisfy these concepts. The where
clause of iter swap therefore introduces these as assumptions in
the body of iter swap, allowing the instantiation of swap to type-
check.

3.1.2 Negative Constraints
All of the constraints described thus far have been concept con-
straints which can be satisfied only when the concept arguments
model the concept. For example, a constraint InputIterator<Iter>
is only satisfied when the type Iter is a model of Input Iterator.
Negative constraints, on the other hand, are only satisfied when the
concept arguments do not model the concept. A negative constraint
!ForwardIterator<Iter> can be satisfied by a type Iter that is only
an Input Iterator, or not even an iterator at all.

Negative constraints are most useful for directing algorithm spe-
cialization when selection among specializations is ambiguous. In
the following example, we provide three different implementations
of sort() with different concept requirements:

template<Sequence S>
where LessThanComparable<S::value type>
void sort(S& s) {

vector<S::value type> v(s.begin(), s.end());
quick sort(v);
copy(v.begin(), v.end(), s.begin());

}
template<SortedSequence S> void sort(S&) {}
template<RandomAccessSequence S>
where LessThanComparable<S::value type>
void sort(S& s) {

quick sort(s);
}

If this sort() routine were called with a sorted array, which models
both the Sorted Sequence and Random Access Sequence concepts,
compilation would fail with an ambiguity [27], because neither
the second nor the third sort() is better than the other. Negative
constraints can be used to break such ties, by excluding types that
model certain concepts. We augment the where clause of the third
sort() to reject sorted sequences, resolving the ambiguity:

template<RandomAccessSequence S>
where LessThanComparable<S::value type> &&
where !SortedSequence<S>
void sort(S& s) {

quick sort(s);
}

3.1.3 Constraint Propagation
Constraint propagation is a language mechanism that gathers con-
straints on type parameters that are induced by other constraints on
the same type parameter. Constraint propagation often allows the
omission of “obvious” constraints, simplifying the expression of

concept-constrained templates. In our experience, the lack of con-
straint propagation leads to verbose specifications of generic func-
tions and interfaces [16, 29].

Concepts support constraint propagation by propagating the re-
quirements from any concepts or templates used in the declaration
of an entity (concept, generic function, or generic data structure)
into the where clause of that entity. For example, consider the fol-
lowing simple wrapper function that sorts a list:

template<LessThanComparable T>
void sort container(list<T>& c) {

c.sort();
}

The list class template, shown in Section 3.1, requires that its
type parameter T model the Copy Constructible concept. The
list<T>::sort() method introduces the additional requirement that
T be Less Than Comparable. Without constraint propagation, our
sort container() function would fail to compile, because it does
not guarantee that T is a model of Copy Constructible, and there-
fore cannot use list<T>.

That T should be Copy Constructible is obvious from the dec-
laration of sort container(): if T were not Copy Constructible, the
user could not have created an object of type std::list<T> to pass
to sort container(). Constraint propagation scans the declaration
of constrained function templates identifying places where other
templates are used, then adds the constraints of those templates
to the where clause. These constraints can then be assumed to
hold, when type-checking the definition of the constrained func-
tion template, as discussed in Section 4.4. With sort container(),
the presence of list<T> in the declaration causes the requirements
of list<T> (i.e., CopyConstructible<T>) to be propagated, es-
sentially replacing the declaration with the following:

template<LessThanComparable T>
where CopyConstructible<T>
void sort container(list<T>& c);

Concepts provide a special form of constraint propagation for types
that are passed to or returned from functions. For each type T that
is passed by value, the constraint CopyConstructible<T> will
be propagated into the where clause. The following min value()
function propagates CopyConstructible<T>, because T is both
passed as a parameter by value and returned by value. Without
constraint propagation, this generic function would fail to compile
when the return statement attempts to copy the result.

template<LessThanComparable T>
T min value(T x, T y) {

return x < y? x : y;
}

3.2 Concept Definitions
A concept definition is a namespace-level entity that bundles to-
gether a set of requirements and names them. A concept consists
of a parameter list, an (optional) refinement clause, an (optional)
where clause, and a body (optionally) specifying further require-
ments specific to this concept. The body can specify three kinds
of requirements on the concept parameters: signatures, associated
types, and (nested) where clauses.



We can define a concept named Forward Iterator with a single
type parameter, Iter, as follows:

concept ForwardIterator<typename Iter> { ... };

The parameter(s) of a concept are placed after the concept name,
to emphasize that the parameters are mandatory. We could have
used a template header, as is done for class and function templates.
However, unlike class and function templates, a concept without
any parameters does not make sense, because concepts describe
requirements on their parameters. The typename keyword specifies
a type parameter; concepts can also have template and non-type
(e.g., integer) parameters.

3.2.1 Refinement
Typically, we define a concept in terms of previously defined con-
cepts using a form of inheritance called refinement. Refinement is
expressed using the same syntax as inheritance, to emphasize the
“is-a” relationship between concepts. We can define a concept Bidi-
rectional Iterator in terms of Forward Iterator:

concept BidirectionalIterator<typename Iter>
: ForwardIterator<Iter> { ... };

A concept may refine any number of other concepts. Because
concepts do not contain state, the repetition of refinements is not
a problem either theoretically or practically. Concepts contain sets
of requirements, and set union simply ignores duplicates.

3.2.2 Associated Types
Often, we design types that rely critically on related types. For
example, a graph type may refer to the types of edges and vertices,
which are used in most graph operations. Thus, the concept Graph
used to express generic graph algorithms may require that a graph
type name its edge and vertex types, so that the concept can refer
to these types in its signatures:

concept Graph<typename G> {
typename edge;
typename vertex;
...
edge find edge(vertex u, vertex v, const G& g);

};

Associated types are are place-holders for actual types, that is, con-
cept they are implicit parameters to the concept. However, associ-
ated types are nested inside the concept because they are entirely
determined by the concept and its (explicit) parameters. For in-
stance, if we are given a type G that is a graph, we can determine
its edge and vertex types because they are part of the graph defini-
tion. The converse is not true: there may be many graph types that
all share the same vertex and edge types, particularly for common
indexing types (int) or opaque pointers (void∗).

A concept may provide a default for an associated type. The
default type need not be well-formed if the concept map provides
the type definition so that the default isn’t used. For example, we
can define the Input Iterator concept to require four associated types
that default to nested type definitions in the iterator:

concept InputIterator<typename Iter> {
typename value type = Iter::value type;
typename reference = Iter::reference;
typename pointer = Iter::pointer;
typename difference type = Iter::difference type;
...

};

It is possible to eliminate associated types by replacing each as-
sociated type with a new concept parameter. However, doing so
makes the use of concepts much more verbose, because each refer-
ence to the concept will need to specify all of the type parameters,

even when most of those parameters are not directly used by most
generic algorithms [15,16]. For instance, in the following find() al-
gorithm, we must mention the Reference, Pointer, and Difference
type parameters even though they are unused:

template<typename Iter, typename Value,
template<typename Reference, typename Pointer,
template<typename Difference,
template<EqualityComparable<Value> T>
where InputIterator<Iter, Value, Reference, Pointer, Difference>
Iter find(Iter first, Iter last, T v);

3.2.3 Nested Requirements
Nested requirements allow the use of other concepts to express re-
quirements on a concept’s type parameters and associated types.
Consider the STL Container concept. Its associated iterator type
satisfies the requirements of Input Iterator. Furthermore, the con-
tainer’s value type must be the same type as the iterator’s value type.

concept Container<typename X> {
typename value type;
InputIterator iterator;
where SameType<value type,
where SameType<InputIterator<iterator>::value type>;

};

Note the use of Input Iterator as the type of the associated type
iterator. This is the shorthand for:

typename iterator; where InputIterator<iterator>;

3.2.4 Function Signatures
Signatures express requirements for specific functions or operators.
During type checking, they serve two purposes. When checking a
concept map definition, signatures specify the functions that must
be implemented by a concept map. When checking a template
definition, signatures specify some of the operations that may be
legally used in its body.

Syntactically, an abstract signature is just a normal C++ func-
tion declaration or definition. A signature may be followed by a
function body, providing a default implementation to be used if a
concept map does not define the function (see Section 3.4 for more
details and an example). The following definition of the Equality
Comparable concept includes two signatures, the second of which
has a default implementation:

concept EqualityComparable<typename T> {
bool operator==(const T& x, const T& y);

bool operator!=(const T& x, const T& y)
{return !(x==y);}

};

An operator signature can be satisfied either with a free function
definition (at global scope, in a namespace, or in a concept map)
or a member function definition. Operators that normally are only
allowed as member functions may be expressed as normal “free”
functions in concept requirements. For instance, the Convertible
concept describes the requirement for an implicit conversion from
one type to another:

concept Convertible<typename T, typename U> {
operator U(const T&);

};

The requirement that an operation must be implemented as a mem-
ber function is expressed with an abstract signature qualified by the
type. For example, in the following Container concept there is a re-
quirement for an empty member function for type X. Constructor
requirements are expressed similarly.



concept Container<typename X> {
bool X::empty() const;
X::X(int n);

};

A concept may require a function template via a signature template,
which may itself be a constrained template. The following Sequence
concept illustrates the use of a signature template to describe the
STL sequence constructors that allow one to construct, for instance,
a vector from a pair of list iterators.

concept Sequence<typename X> {
typename value type;

template<InputIterator InIter>
where Convertible<InIter::value type, value type>
X::X(InIter first, InIter last);

};

We are investigating an alternative to abstract signatures, called
use patterns [12], which express operation requirements via expres-
sions that illustrate how concept parameters can be used, rather than
declarations that state what concept parameters provide. Much of
the design of concepts is independent of the syntax used to describe
required operations.

3.3 Overloading and Specialization
Using concepts, the Generic Programming notion of specializa-
tion takes on two different forms. The most commonly used form
of specialization is concept-based overloading, which allows the
names of function templates to be overloaded on their where
clauses. This form of specialization—referred to as concept-based
overloading—permits the expression and selection of the most spe-
cific algorithm for a particular task. Here we revisit the discussion
of the advance() function from Section 2.2 in more detail. There
are three potential implementations of advance(), depending on
the characteristics of the iterator: Input Iterators can be moved for-
ward with n increments Bidirectional Iterators can be moved either
forward or backward in |n| steps, and Random Access Iterators can
jump forward or backward any distance in constant time. These
three functions can be expressed as overloaded function templates
follows:

template<InputIterator Iter>
void advance(Iter& iter, Iter::difference type n) {

while (n−−) ++iter;
}
template<BidirectionalIterator Iter>
void advance(Iter& iter, Iter::difference type n) {

if (n > 0) { while (n−−) ++iter; }
else { while (n++) −−iter; }

}
template<RandomAccessIterator Iter>
void advance(Iter& iter, Iter::difference type n) {

iter += n;
}

An invocation of the advance() function will select the most spe-
cific implementation of the advance() function based on the ca-
pabilities of the type provided. In the following three examples,
the Input Iterator, Bidirectional Iterator, and Random Access Itera-
tor versions of advance() will be invoked, respectively:

void advancement(istream iterator<int> ii,
void advancement(list<string>::iterator lsti,
void advancement(vector<float>::iterator vi) {

advance(ii, 17);
advance(lsti, 17);
advance(vi, 17);

}

Concept-based overloading is particularly interesting when an
overloaded function such as advance() is called from within an-
other generic function. The STL lower bound() algorithm, for
instance, performs a binary search for a given value within a se-
quence denoted by iterators. An implementation of lower bound()
(extracted from ConceptGCC) follows.

template<ForwardIterator Iter>
where LessThanComparable<Iter::value type>
Iter
lower bound(Iter first, Iter last, const Iter::value type& value) {

Iter::difference type len = distance(first, last);
Iter::difference type half;
Iter middle;

while (len > 0) {
half = len >> 1;
middle = first;
advance(middle, half);
if (∗middle < value) {

first = middle;
++first;
len = len − half − 1;

} else len = half;
}
return first;

}

The implementation of lower bound() relies on two auxiliary func-
tions: advance() and distance(); advance() moves the iterator
forward some number of steps (to find the new “middle”), while
distance() determines the length of the sequence. The algorithm
itself can operate on Forward Iterators, providing a logarithmic
number of comparisons but a linear number of iterator increment
operations due to the linear-time implementations of advance()
and distance(). However, when the algorithm is provided with
a Random Access Iterator, concept-based overloading selects the
constant-time versions of advance() and distance() to effect a
lower bound() algorithm with a logarithmic number of compar-
isons and iterator movements:

list<int> lst;
binary search(lst.begin, lst.end(), 17); // O(n) movements

vector<int> v;
binary search(v.begin, v.end(), 17); // O(lg n) movements

The mechanism that ensures that the most efficient forms of
advance() and distance() are selected is similar to the two-
phase name lookup facility of C++ templates, because it performs
some type-checking at template definition time but defers the fi-
nal decision until instantiation time. When a template such as
lower bound() is initially parsed, overload resolution solution re-
solves calls by selecting a seed function, which is the most specific
function that meets the minimal requirements of the template be-
ing parsed. The call to advance() therefore resolves to the Input
Iterator variant of advance(), because lower bound() is only guar-
anteed to pass a Forward Iterator to advance(). Later, when the
template is instantiated with a given set of concrete template ar-
guments, overload resolution for the call is performed a second
time with an expanded set of candidate functions. The set of candi-
date functions includes the seed function selected in the first phase
(at template definition time) and all other functions that meet the
following three criteria:

• The function occurs within the same lexical scope as the seed
function,

• the function’s template parameters, return type, and argument
types are identical to those of the seed function, and

• the requirements in the function’s where clause are stricter than
those of the seed function’s where clause.



These criteria represent a compromise between the ideal of
modular type checking for templates and the need to select the
most efficient function for any given operation. By limiting the set
of candidate functions to those with identical signatures, we en-
sure that type errors cannot occur when more specific functions
are found. However, by allowing functions that are more specific
than the seed to enter the candidate set—even if they are declared
after the calling function—we free ourselves from ordering depen-
dencies and allow the most efficient operations to be selected in
the vast majority of important cases. Note, however, that even with
the restrictions we are placing on the candidate set we have not
eliminated all sources of instantiation-time errors: ambiguities in
the overload resolution process can still occur, a topic which we
discuss in a separate paper [27]. In practice, we have found that
instantiation-time errors due to ambiguities are very rare.

By ensuring that the most efficient form of advance() is se-
lected, algorithms can be written in a very generic style without sac-
rificing performance due to that genericity. The same “two-phase”
strategy applies to the selection of class template partial specializa-
tions. In the following example we define a dictionary template that
selects among three alternatives for lookup: a balanced binary tree,
a hash table, or a hash table using sorted separate chains. These
three alternatives are expressible as constrained partial specializa-
tions of the primary dictionary template:

template<EqualityComparable Key, Regular Value>
class dictionary;

template<EqualityComparable Key, Regular Value>
where LessThanComparable<Key>
class dictionary<Key, Value>
{ /∗ use balanced binary tree ∗/ };

template<Hashable Key, Regular Value>
where EqualityComparable<Key>
class dictionary<Key, Value>
{ /∗ use hash table ∗/ };

template<EqualityComparable Key, Regular Value>
where Hashable<Key> && LessThanComparable<Key>
class dictionary<Key, Value>
{ /∗ use hash table with sorted chains ∗/ };

Concept-based overloading and specialization are crucial to sup-
port the Generic Programming ideal of always selecting the most
efficient operation or data structure based on complete type infor-
mation. These features follow naturally from the expression of con-
strains via where clauses, and integrate seamlessly into the existing
C++ rules governing partial ordering of templates.

3.4 Concept Maps
One of the strengths of Generic Programming in C++ is that tem-
plates allows users to instantiate templates with types providing a
variety of interfaces. For example, the sort algorithm accepts point-
ers and user-defined iterators and the vector container can hold both
built-in types and user-defined types. Unconstrained templates per-
mit a variety of interfaces by allowing a built-in range of variations
in argument passing style, operations declared as member vs. free
functions, etc. With concepts, we generalize this notion to an arbi-
trary, user-defined mapping from a type to a concept, established
by a concept map.

A concept map definition establishes that a type is a model of
a concept and defines a mapping that states how the type models
the concept. This mapping can include specifying associated types
(e.g., the value type of an iterator) or providing definitions for
the operations required by a concept. Concept maps establish a
modeling relationships, so a concept map is often called a model.

Consider the following example:

class student record {
public:

string id;
string name;
string address;

bool id equal(const student record&);
bool name equal(const student record&);
bool address equal(const student record&);

};

While the student record type is useful for storing information
about students, from the point of view of many algorithms (e.g.,
find()) it lacks a way of comparing records. We could of course
add such a comparison, but there are several ways of comparing
records, so we prefer to define a comparison specifically for the
Equality Comparable concept used by find() and its brethren:

concept map EqualityComparable<student record> {
bool operator==(const student record& a,

const student record& b)
{ return a.id equal(b); }

};

A map is defined from the student record type to the Equality
Comparable concept. This concept map is used whenever a tem-
plate requires student record to be Equality Comparable. In partic-
ular, when an algorithm uses == on a parameter declared Equality
Comparable that is instantiated with a student record, the == de-
fined in the concept map EqualityComparable<student record>
is used. We do not have to redesign student record to match the al-
gorithms requirements or separately define a new type to provide a
mapping. Nor do we need to define the meaning of == for all code
in our program. Concept maps allow us to provide an interface to
our data types that is specific to a given concept without interfer-
ing with the interfaces of other concepts or making that interface
global.

When a concept map is declared, its definition is checked for
consistency against the concept. Each of the signatures in the con-
cept must be satisfied by a function definition in the concept map,
each associated type must be satisfied by a type definition in the
concept map, and, and all nested requirements must be satisfied.
For any signatures or associated types not provided by the concept
map, default versions will be synthesized either from the lexical
scope of the concept map (for signatures) or from the defaults pro-
vided in the concept. Thus, when the default definitions for signa-
tures and associated types are correct for a given set of types, the
concept map definition may be empty. For example, in the follow-
ing concept map definition the built-in integer == and != operators
will be used to satisfy the requirements of Equality Comparable:

concept map EqualityComparable<int> { };

Concept maps can be templated. For example, the following defi-
nition says that any pointer type can be used as a Mutable Random
Access Iterator:

template<typename T>
concept map MutableRandomAccessIterator<T∗> {

typedef T value type;
typedef T& reference;
typedef T∗ pointer;
typedef ptrdiff t difference type;

};

Concept map templates can express nontrivial relationships. For
instance, the STL vector class is Equality Comparable whenever its
type parameter T is Equality Comparable:

template<EqualityComparable T>
concept map EqualityComparable<vector<T> > { };



Possibly the most important use of concept map templates is to
compose generic libraries. Often, two libraries will provide com-
ponents that are related because they express the same fundamen-
tal idea, but syntactic differences prevent reuse of the components.
Concept maps can be used to adapt the syntax of one concept to
the syntax of the other. More importantly, this mapping can be
performed even when the concepts represent entities from differ-
ent application domains. Consider a graph G = (V, E), where
E ⊆ V ×V . Theoretically, one can view the graph G as a |V |×|V |
one-zero matrix A, where Ai,j = 1 when (i, j) ∈ E and Ai,j = 0
when (i, j) /∈ E. Concept maps allow us to express this relation-
ship directly, so that any data structure that is a model of Graph can
also be used with a linear algebra library that expects a Matrix:

template<Graph G>
concept map Matrix<G> {

typedef int value type;
int rows(const G& g) { return num vertices(g); }
int columns(const G& g) { return num vertices(g); }
double operator()(const G& g, int i, int j) {

if (edge e = find edge(ith vertex(i, g), ith vertex(j, g), g))
return 1;

else return 0;
}

};

my graph g = read graph();
vector<int> x = compute ith eigenvector(g, 0);

By expressing the mapping from graph theory into linear algebra,
we are able to immediately reuse the algorithms from the domain of
linear algebra to compute such properties as graph eigenvalues [7].
We only require lightweight mappings expressed via concept maps,
which will be optimized away by the compiler’s inliner. Concept
maps therefore permit cross-domain fertilization through the com-
position of separately developed libraries.

3.4.1 Implicit and Explicit Concepts
Writing concept maps can be a burden to the user of constrained
templates: before using a template a programmer must declare how
the argument types map to the appropriate concepts. It would be
convenient if instead the compiler would perform a check to see if
a mapping is actually necessary. That is, the compiler could simply
check if a type has the required types and operations. Unfortunately,
such an implicit (“structural”) check can (in our design) only take
into account syntactic properties of a type, whereas significant dif-
ferences can be semantic. This introduces the potential for run-time
errors in what would otherwise be innocuous situations. Consider:

istream iterator<int> first(cin), last;
vector<int> v(first, last);

This should initialize a vector from standard input, but if implicit
matching is used, it instead results in an empty vector or a run-time
error. The reason is that vector defines two overloads for its range
constructor: a slow version that grows the vector incrementally,
and a faster version that relies on the multi-pass capabilities of a
Forward Iterator to determine the size of the range and resize the
vector ahead of time.

template<CopyConstructible T>
class vector {

template<InputIterator Iter>
where Convertible<Iter::value type, T>
vector(Iter first, Iter last); // slow

template<ForwardIterator Iter>
where Convertible<Iter::value type, T>
vector(Iter first, Iter last); // fast

...
};

The istream iterator does not provide multi-pass capabilities, how-
ever it structurally (syntactically) satisfies the requirements of For-
ward Iterator. Therefore, the constructor call would resolve to the
more specialized (faster) version. This would read the input and re-
serve space in the vector, but it would not be able fill the vector in
a second pass through the input range because the input will have
been consumed in the first pass.

The author of a concept can choose between explicit and im-
plicit concepts. Concepts with important semantic aspects that are
used for overloading should be explicit; other concepts can be im-
plicit. An implicit concept is identified by placing the auto keyword
in front of concept. For example, the following is the Equality Com-
parable concept specified to allow implicit matching:

auto concept EqualityComparable<typename T> {
bool operator==(const T& x, const T& y);

bool operator!=(const T& x, const T& y)
{return !(x==y);}

};

3.4.2 Refinements and Concept Maps
When a concept map is defined for a concept that has a refinement
clause, concept maps for each of the refinements of that concept
are implicitly defined. For example, the concept map in Section 3.4
that makes pointers a model of Mutable Random Access Iterator also
makes pointers model Random Access Iterator, Bidirectional Itera-
tor, Forward Iterator, etc., because Mutable Random Access Iterator
refines all of the iterator concepts, either directly or indirectly.

The implicit generation of concept maps for refinements min-
imizes the number of concept maps that users must specify for a
given refinement hierarchy. It suffices to provide a concept map for
the most refined concept that the concept arguments model, as we
have done for pointers in the iterator hierarchy.

Beyond the benefits of reducing the amount of effort users must
expend writing concept maps, the implicit generation of concept
maps allows refinement hierarchies to evolve without breaking ex-
isting code. As refinement hierarchies evolve, they tend to move
from coarse-grained approximations to finer-grained approxima-
tions, as new models, whose behavior fits “in between” two existing
concepts, are discovered. For example, the Forward Iterator intro-
duces two new kinds of requirements on top of the Input Iterator
concept it refines: the need for the reference associated type to be
a true reference and the “multi-pass” property that allows repeated
iteration through the sequence of values. Since the inception of the
STL iterator concepts, iterator types that provide the latter property
but not the former (such as a “counting iterator” that enumerates
values) have become more prevalent, leading to the introduction of
a Multi Pass Input Iterator concept [6] that sits between Input Iter-
ator and Forward Iterator in the refinement hierarchy. Without the
implicit generation of concept maps for refinement, the introduc-
tion of this new iterator concept would break code based on the ex-
isting hierarchy, because every Forward Iterator concept map would
have to be augmented with a new concept map for Multi Pass Input
Iterator. With implicit generation of concept maps for refinements,
a concept hierarchy can evolve to a more fine-grained structure over
time, without breaking backward compatibility.

4. ConceptGCC
To evaluate our proposed extensions to C++, we implemented con-
cepts in the GNU C++ compiler [17] and reimplemented the STL
using concepts (Section 5). Our concept-enhanced version of GCC
is freely available from the ConceptGCC web site [19] . Here, we
provide an overview of ConceptGCC and discuss several of the
implementation techniques we employed. We refer the interested
reader to [21] for additional details of concept compilation.



The aim of ConceptGCC is partially to provide us a tool with
which to experiment with the use of concepts, and partially to
demonstrate that concepts can be integrated into real compilers.
For concepts to become accepted as part of C++0x we must make
it plausible that such integration is possible and economical in
all major C++ compilers, and ensure that there is a great deal of
practical experience with concepts prior to standardization [24].

4.1 Compilation Model
There are many potential compilation models that could be applied
to C++ templates [69]. However, existing C++ compilers implement
the so-called inclusion model of templates, where the definition
of a template must be available wherever the template is used.
When a particular instance of a template is needed, the compiler
instantiates the template by substituting the concrete types needed
by the instance for the corresponding template parameters. The
result is code that is specific to and optimized for a particular
use of the template. Coupled with compiler optimizations such
as inlining and copy propagation, template instantiation enables
generic C++ libraries to produce code as efficient as hand-tuned
FORTRAN [34, 55, 68].

ConceptGCC retains the template inclusion model of compila-
tion. This decision was motivated by the need for backwards com-
patibility, the need to fit into existing C++ compilers, and the need
to provide the performance currently delivered using unconstrained
templates. The benefits of improved type-checking for templates
would be weakened if they represented a trade-off in performance.

The adoption of the template inclusion model of compilation
precludes separate compilation for C++ templates. In this C++ con-
strained generics (concepts) differ from C# and Java generics. In
C# and Java the default is that all instances of a generic method
share the same native code. However, C# has some flavor of the
instantiation model: different code is generated for each different
instantiation of a generic method whose type arguments are value
types. To attain apparent separate compilation, this instantiation-
specific code is generated at run time.

The G language [57–59] shares syntactic constructs with our
design for C++ However, G differs in that it provides separate
compilation and therefore implements a weaker form of concept-
based overloading than we propose for C++ concepts. Concept-
based overloading in G is resolved exclusively based on the lexical
information available prior to template instantiation, whereas we
postpone part of the overload resolution until after instantiation,
when more information is available. This more powerful facility
for dispatching prevents the separate compilation of template def-
initions, and also prevents completely separate type checking, as
overload ambiguities may occur during instantiation. We report on
these and other issues in another paper [27]. Overall, the inclusion
model of templates is the best match for C++ at this time, although
we plan to further explore the interaction between specialization
and separate compilation.

4.2 Concepts and Concept Maps
The concept map lookup process shares so much with the nor-
mal C++ template instantiation process that compiling concepts and
concept maps into class templates provides a reasonable implemen-
tation approach. Concepts are compiled to class templates and con-
cept maps are compiled to (full) specializations of those class tem-
plates. Concept map templates are compiled to partial specializa-
tions of the class templates. ConceptGCC exploits this similarity
completely, representing refinement via (virtual) inheritance, func-
tion signatures as static member functions, and associated types as
nested typedefs.

Concept maps provide the same static member functions and
typedefs as in their concept’s class. Using this representation, Con-

ceptGCC is able to directly reuse much of the existing C++ front
end functionality, including qualified name lookup (used to find as-
sociated types and signatures in concepts and concept maps), name
lookup in base classes (used to find associated types and signa-
tures in refinements), template instantiation (for synthesizing con-
cept maps from concept map templates and implicitly matching
concepts), and partial ordering of templates (for concept map se-
lection and concept-based overloading). Although concepts are se-
mantically distinct from class templates, their structural similarities
can greatly reduce the implementation cost of introducing concepts
into an existing C++ compiler.

Figure 4 shows the compilation of a simple concept and concept
map definition.

4.3 Compilation of Constrained Templates
The definition of a constrained template is compiled so that expres-
sions that refer to function signatures from the where clause are
translated into expressions that make explicit qualified calls into
the class specializations for the appropriate concept map. For ex-
ample, the expression:

s = s + ∗first

from the sum() example in Section 2.1 is translated into the fol-
lowing:

Addable<value type>::operator+(s,
InputIterator<Iter>::operator∗(first))

The completely transformed version of the sum() algorithm looks
like this:

template <typename Iter>
T sum(Iter first, Iter last, Iter::value type s) {

typedef InputIterator<Iter>::value type value type;
for (; InputIterator<Iter>::operator!=(first, last);
for (; InputIterator<Iter>::operator++(first))

Assignable<value type>::operator=(
Ass,
AsAddable<value type>::operator+(
AsAds,
AsAdConvertible<reference>::operator value type(
AsAdCoInputIterator<Iter>::operator∗(first))));

return CopyConstructible<value type>::value type(s);
}

Note that this translation is reminiscent of dictionary-based schemes
for separate compilation of generics: in effect, the instantia-
tion process is acting as dictionary lookup, because resolving
Addable<value type> involves finding the best matching concept
map (selecting a dictionary) and extracting its operator+ acts as
lookup into the dictionary. The main difference between this trans-
lation and dictionary passing is that here the lookup is performed at
compile-time and there is no run-time data-structure passed to the
generic function.

4.4 Type-checking Templates
The visible benefits of concepts come from the introduction of
modular type checking for templates. Not surprisingly, so do most
of the implementation challenges. It is a common misconception
that C++ template definitions are completely unchecked when they
are initially parsed. In fact, type-checking templates is a two-stage
process. In the first stage, when parsing the template definition, a
C++ compiler will type-check any non-dependent expressions, i.e.,
those that do not depend on any template parameters. Any depen-
dent expressions (i.e., those that somehow depend on a template
parameter) will be stored in an abstract syntax tree without any type
information. In the second stage, during template instantiation, con-
crete types are substituted for template parameters throughout the



concept Addable<typename T> {
T operator+(const T&, const T&);

};
concept map Addable<big int> {

big int operator+(const big int& a, const big int& b)
{ return a.plus(b); }

};

=⇒

template<typename T>
class Addable;

template<>
class Addable<big int> {

static big int operator+(const big int& a, const big int& b)
{ return a.plus(b); }

};

Figure 4. Compilation of concepts and concept maps.

abstract syntax tree. This process makes all dependent expressions
non-dependent, thereby type-checking the entirety of the template
with concrete types.

ConceptGCC implements modular type checking by making
dependent expressions into non-dependent expressions in the first
stage, so that the entire template definition will be type-checked
when it is initially parsed. To do so, ConceptGCC generates an
archetype [56] for each template parameter, using the archetype
for type-checking in lieu of its corresponding template parame-
ter. Archetypes are placeholder types that define only the oper-
ations that have been stated by concept requirements involving
the template parameters. For instance, the archetype for tem-
plate parameter T in the swap() function of Section 3.1 will
only have two operations defined: a copy constructor, provided by
CopyConstructible<T>, and an assignment operation, provided
by Assignable<T>.

Due to the use of archetypes and making more expressions non-
dependent, the implementation of modular type-checking in Con-
ceptGCC required far fewer changes to the compiler or language
semantics than we had anticipated. Moreover, by placing both con-
strained and unconstrained template compilation into the same
framework of (non-)dependent expressions, we are able to com-
pile partially-constrained templates where some parameters have
been explicitly marked “unconstrained.” These templates have been
found useful for the introduction of concepts into existing C++ li-
braries, and may play a further role when template libraries need to
break modular type checking in a localized way to perform some
useful but type-unsafe operation.

4.4.1 Same-type Constraints
Same-type constraints are requirements (contained either in a
where clause or as a nested requirement in a concept) that two
types be equivalent. When type checking the definition of a tem-
plate, same-type constraints in the where clause affect which types
are considered equal. Consider the includes() function template:

template<InputIterator InIter1, InputIterator InIter2>
where SameType<InIter1::value type, InIter2::value type> &&
where LessThanComparable<InIter1::value type>
bool includes(InIter1 first1, InIter1 last1,
bool includes(InIter2 first2, InIter2 last2) {

...
if (∗ first2 < ∗ first1)

...
}

In the body of includes(), the type InIter1::value type is con-
sidered the same type as InIter2::value type. This equivalence is
important; consider ∗ first2 < ∗ first1. Because the < opera-
tor is defined as a type-symmetric operation on the first iterator’s
value type. The compiler must use the equivalence between the
two value types to type-check this function template.

Type equality is an equivalence relation: it is reflexive, transi-
tive, and symmetric. Thus, a same type constraint may imply many
other type equalities. The following template is an example where

transitivity is required for type checking: the compiler must deduce
that R is the same type as T:

template<typename R, typename S, LessThanComparable T>
where SameType<R,S> && SameType<S,T>

bool foo(R r, S s, T t) { return r<s && r<t; }

Type equality is also congruence relation. For example, if we have
SameType<S,T> then SameType<vector<S>,vector<T>>
holds. Conversely, SameType<vector<S>,vector<T>> implies
SameType<S,T>. The compiler must also ensure that the same-
type constraints appearing in a where clause do not conflict. For
example, if the where clause contains (or implies) a constraint such
as SameType<int,char>, the compiler should produce an error.

The problem of determining whether two types are equal given
a set of same-type constraints is an instance of the congruence clo-
sure problem. The congruence closure problem already shows up in
modern compilers, for example, in common sub-expression elim-
ination. There are efficient algorithms for the congruence closure
problem: the algorithm by Nelson and Oppen [48] is O(n log n)
time complexity on average, where n is the number of type nodes.
It has O(n2) time complexity in the worst case. This can be im-
proved by instead using the slightly more complicated Downey-
Sethi-Tarjan algorithm which is O(n log n) in the worst case [13].

The propagation of same-type constraints affects more than
types. For instance, it can cause concept maps introduced by a
where clause to become duplicated. This is particularly com-
mon with nested requirements. For instance, in the following
example the same-type constraint that makes the two iterator’s
difference types equivalent also means that the two SignedIntegral
concept maps are now a single concept map. In ConceptGCC, we
remove duplicates from the list of requirements once all same-type
constraints have been processed.

concept InputIterator<typename Iter> {
SignedIntegral difference type;
// ...

};

template<InputIterator Iter1, InputIterator Iter2>
where SameType<Iter1::difference type, Iter2::difference type>
void f(Iter1 first1, Iter1 last1, Iter2 first2);

Same-type constraints change the notion of type equivalence in
C++. An efficient implementation of same-type constraints, based
on congruence closure, is provided by the compiler for G [58, 59].
Within ConceptGCC, however, we were forced to implement a
simple disjoint sets data structure augmented by deep type com-
parisons, because GCC’s internal representation of types is not
amenable to congruence closure algorithms.

4.4.2 Use of Class Templates and Specializations
Generic functions and data structures are often implemented using
other, generic data structures. For instance, the STL mismatch()
algorithm returns a pair of iterators:



template<InputIterator Iter1, InputIterator Iter2>
where EqualityComparable<Iter1::reference, Iter2::reference>
pair<Iter1, Iter2>
mismatch(Iter1 first1, Iter1 last1, Iter2 first2) {

while (first1 != last1 && ∗first1 == ∗first2) {
++first1;
++first2;

}
return pair<Iter1, Iter2>(first1, first2);

}

When type-checking the body of this algorithm, the compiler must
verify that the type pair<Iter1, Iter2> has a constructor accepting
two parameters of type Iter1 and Iter2, respectively. To do so, the
compile will need to look inside the definition of the class template
pair, whose definition follows:

template<typename T, typename U>
class pair {
public:

pair(const T&, const U&);
// ...

};

ConceptGCC implements type-checking for uses of class tem-
plates within constrained templates via archetypes. When the def-
inition of mismatch() is type-checked, the compiler generates
archetypes A Iter1 and A Iter2 for the template type parame-
ters Iter1 and Iter2, respectively. The compiler also generates a
type equivalence between the template type parameters and their
archetypes. At the point when the compiler requires a complete
type for pair<Iter1, Iter2> (e.g., to search for a suitable con-
structor in the return statement), ConceptGCC instantiates the
template class pair<A Iter1, A Iter2>. Doing so creates the con-
structor pair(const A Iter1&, const A Iter&), which is invoked
by the return statement. Thus, by instantiating class templates with
archetypes, ConceptGCC is able to type-check function templates
such as mismatch() that use class templates.

There are some pitfalls with instantiating class templates in-
side a generic function. The definitions of those class templates are
required for type-checking such instantiations, but this introduces
the potential for instantiation-time failures that break modular type
checking. In particular, it is possible that an instantiation of the al-
gorithm will select a specialization of a class template that does
not provide precisely the same members as the primary template.
For pair this would be absurd. However, not all templates are as
simple as pair. For example, containers sometimes provide opti-
mized implementations for particular argument types. In particular,
the C++ vector, optimizes storage of bool to a single bit per value
via the vector<bool> specialization [25, §23.2.5]. This optimiza-
tion, however, changes the interface in subtle ways that can lead
to instantiation-time failures. Consider the following generic func-
tion:

template<Regular T>
void g(vector<T>& vec) {

T& startval = vec.front();
// ...

}

The definition of this function template is correct and will type-
check properly with ConceptGCC. It will instantiate properly for
vectors of integers, strings, lists, employees, and nearly every other
data type. However, when invoked with a vector<bool> the in-
stantiation will fail to compile, because the front() method of
vector<bool> returns a proxy class type vector<bool>::reference,
not a true reference. This is a design flaw of the C++98 STL caused
by the inability of C++98 to express a perfect proxy for a reference.

How did the vector<bool> specialization manage to subvert
modular type checking? When g() is defined and type-checked, its

use of vector<T> is checked against the primary class template for
vector; there front() returns a reference to T. The vector<bool>
specialization may not even have been available to the compiler at
the time this type-checking occurred. Later, during the instantiation
of g<bool>, the compiler selects the most specialized form of
vector, the vector<bool>. Since vector<bool> does not provide
a compatible front() method, instantiation fails.

There are myriad workarounds that could be applied to fix this
problem. We could provide a specialized g() for vector<bool>.
We could design a Sequence concept to encapsulates the behavior
required by g(), so that a call with a vector<bool> argument
would fail because it is not a Sequence. We could eliminate the
potential for these problems by placing language restrictions on
specializations; Siek and Lumsdaine proved [57] with the system
F G that a language with concepts but without specialization can
provide modular type checking. To obtain modular type checking,
we must either restrict the use of specializations (thereby breaking
the principle of always selecting the most-specific implementation)
or restrict the implementations of specializations (thereby making it
impossible to use template meta-programming in conjunction with
constrained generics). Neither solution seems feasible for C++.

5. Evaluation
We evaluated the ability of our concept mechanisms to express the
ideas of Generic Programming by enhancing the GNU implemen-
tation of the C++ Standard Template Library, libstdc++, with con-
cepts. We could have developed a new, idealized “STL-like” li-
brary that kept all of the core ideas of the STL but adapted them
to use concepts. However, we instead decided to model the exist-
ing STL (modulo errors) to produce an implementation that con-
forms closely to the ISO C++ standard [25]. Doing so emphasizes
the evaluation of backward compatibility: existing C++ code us-
ing the STL should still compile and produce identical results with
ConceptC++. Unfortunately, modeling the existing STL rather than
inventing a new generic library comes with a price: some design
decisions in the STL would have been very different if concepts
were available at the time of its inception, but we are compelled to
model the existing design rather than improve it.

The process of upgrading the Standard Template Library first in-
volves migrating the semi-formal concept descriptions of the C++
standard (expressed via “requirements tables”) into concept defini-
tions. These are then used to constrain the templates—algorithms,
data structures, and adaptors—of the STL.

5.1 Defining STL Concepts
The definition of STL concepts involves the translation from re-
quirements tables, which are used to express the current standard,
into concepts. Figure 5 compares the requirements table for the
Copy Constructible concept (left-hand side, extracted from the ISO
C++ standard [25]) with its ConceptC++ equivalent (right-hand
side). The requirements table specifies the syntax of the concept
using valid expressions, which illustrate the allowed uses of the
types in a concept, while the “type” column provides information
about the return type of the valid expression. Introducing concepts
(shown on the right-hand side of Figure 6), we have preserved
the semantics as closely as possible. Often, some reorganization
of the requirements is necessary, but in this concept the transla-
tion from valid expressions to signatures is straightforward. The
requirements tables for other simple concepts—Assignable, Default
Constructible, Less Than Comparable, Equality Comparable, etc.—
translate equally well into (implicit) concepts.

The most interesting set of requirements tables in the STL de-
scribe the iterator concepts. The left-hand side of Figure 6 illus-
trates one such requirements table, which describes Forward Itera-
tors. In the translation to concepts (shown on the right-hand side of



Table 30, Copy Constructible requirements [25]
expression return type
T(t)
T(u)
T::˜T()
&t T∗
&u const T∗

Type T is a model of Copy Constructible, t is a value of
type T and u is a value of type const T.

auto concept CopyConstructible<typename T>
{

T::T(const T&);
T::˜T();
T∗ operator&(T&);
const T∗ operator&(const T&);

};

Figure 5. The requirements table for Copy Constructible compared with its representation as a concept.

Figure 6), we again have preserved the semantics as closely as pos-
sible but now some reorganization of requirements was necessary:

• We have factored common requirements into refinements.
Many of the valid expressions in the requirements table are
already described in other tables (e.g., Default Constructible,
Copy Constructible, Assignable, Equality Comparable, and Input
Iterator). While refinement does exist within the requirements
tables, it is implicit: when the requirements in table T1 are
a superset of the requirements in another table T2, the concept
associated with T1 refines T2. We have instead made refinement
explicit.

• We have untangled the two distinct concepts described in the
requirements table into separate Forward Iterator and Mutable
Forward Iterator concepts. There is a natural refinement rela-
tionship between the two, as any mutable iterator (which can be
read or written) is also a non-mutable iterator (which can only
be read).

• We have collapsed the iterator traits facility [25, §24.3.1],
which provides access to the associated types of a given iter-
ator, into the iterator concepts themselves. In doing so, we pro-
vide specific meanings for the reference and pointer associated
types, which are required of STL iterators but have unspecified
behavior.

• We have translated each valid expression into a corresponding
signature. In some cases, such as the pre-increment expression
++r, the translation is direct and obvious. In other cases, we
introduce a special associated type that describes the return
type of the signature. The valid expressions in the requirements
table do not specify the exact return type of the operators, and
thus the exact value of this associated type is not specified.
Instead, we place concept requirements on the associated type
to state that it must be “convertible to” the type described
in the requirements table. For instance, operator∗() returns a
value of type reference, which must meet the requirements of
Convertible<reference, value type>, i.e., the return type of
operator∗() is a value that is convertible to the value type, as
described in the requirements table.

Not all of the requirements in the table can be modeled pre-
cisely, although most differences are due to errors in the semi-
formal specification. For example, the requirements table for for-
ward iterators states that the return type of operator∗() (called
reference in the ConceptC++ formulation) must be exactly equal
to const value type& for non-mutable forward iterators or ex-
actly equal to value type& for mutable forward iterators. These
two requirements are mutually exclusive, because no value type
can be identical to both a reference and constant reference. How-
ever, it is assumed throughout the STL that every mutable iterator
is a non-mutable iterator, i.e., mutable iterators refine their non-
mutable counterparts by adding the ability to modify values. To

remedy this situation, our non-mutable iterator concepts provide
a weaker constraint on the reference associated type: it must be
convertible to const value type&, while the mutable iterator con-
cepts state that the reference associated type must be exactly equal
to value type&. By weakening the non-mutable constraint, we are
able to express the necessary refinement relationship between mu-
table and non-mutable iterators.

Translation of the iterator requirements into concepts proved to
be the most challenging part of formalizing the STL. The source of
most problems was the loose specification strategy in requirements
tables (which permits “proxy” objects to be returned from many
iterator operations), the tangling of non-mutable and mutable forms
of the same concepts, and the presence of numerous small errors in
the iterator specifications. Despite these challenges, the resulting
concepts express the spirit of the existing STL closely enough that
iterators, data structures, and algorithms written to the existing
specification can be used with the ConceptC++ STL without any
changes. Section 5.3 discusses the mapping from existing iterators
into concept-enhanced STL iterators in more detail.

5.2 STL Algorithm Requirements
To introduce concepts into the algorithms and data structures of the
STL, we must state the requirements of each STL algorithm (and
data structure). This process involves introducing a where clause
that covers the minimal requirements needed to implement the
algorithm. We focus here on algorithms, although the same process
also applies to generic data structures.

The left-hand side of Figure 7 illustrates the informal specifi-
cation style used to describe the requirements on STL algorithms.
Using the convention that parameters are named after the concepts
they model, the function signatures in the specification state that
find() and find if() require models of the Input Iterator concept
and that the latter function also requires a model of the Predicate
concept. Additionally, as stated in the “requires” clause, the type
parameter T of find() must be a model of Equality Comparable.
The naı̈ve translation of these requirements into concepts is shown
on the right-hand side of Figure 7, but it is incorrect. Attempting
to compile this constrained function template with ConceptGCC
produces the error message illustrated in Figure 8. The problem,
in this case, is that two T values are comparable via == (since
EqualityComparable<T> is required), but the code attempts to
compare the result of dereferencing first (a value type) to T. The
type value type need not be the same as T.

There are two immediate ways to resolve the error in find(). We
could either require that the value type of the iterator be equivalent
to T (using a Same Type constraint) or we could use a type-
asymmetric Equality Comparable. While both options are viable,
it is unclear which is dictated by the specification on the left-
hand side of Figure 7. Therefore, we decided to err on the side
of leniency, because it allows more uses of the find() algorithm,



Forward Iterator requirements [25]
operation type
X u;
X()
X(a)
X u(a);
X u = a;
a == b convertible to bool
a != b convertible to bool
r = a X&
∗a T& if X& is mutable, other-

wise const T&
a→ m U& if X is mutable, otherwise

const U&
r→ m U&
++r X&
r++ convertible to const X&
∗r++ T& if X is mutable, otherwise

const T&
Type X is a model of Forward Iterator, u, a, and b

are values of type X, type T is a value type of
iterator X, m (with type U) is the name of a
member of type T, and r is a reference to a

non-constant X object.

concept InputIterator<typename Iter>
co: CopyConstructible<Iter>, EqualityComparable<Iter>, Assignable<Iter> {

typename value type = Iter::value type;
typename reference = Iter::reference;
typename pointer = Iter::pointer;
SignedIntegral difference type = Iter::difference type
where Arrowable<pointer, value type> && Convertible<reference, value type>;
reference operator∗(Iter);
pointer operator→ (Iter);
Iter& operator++(Iter&);
typename postincrement result;
postincrement result operator++(Iter&, int);
where Dereferenceable<postincrement result, value type>;

};
concept ForwardIterator<typename Iter>
co: InputIterator<Iter>, DefaultConstructible<Iter> {

where Convertible<reference, const value type&>;
where Convertible<pointer, const value type∗>;

};
concept MutableForwardIterator<Iter>
co: ForwardIterator<Iter>, OutputIterator<Iter> {

where SameType<reference, value type&> &&
where SameType<pointer, value type∗>;

};

Figure 6. Forward Iterator and its mutable variant, expressed using documentation conventions, and defined with concepts. For the concept
description we also show the definition of Input Iterator, which encapsulates many of the Forward Iterator requirements.

template<class InputIterator, class T>
InputIterator find(InputIterator first, InputIterator last,
InputIterator find(const T& value);

template<class InputIterator, class Predicate>
InputIterator find if(InputIterator first, InputIterator last,
InputIterator find if(Predicate pred);

1. Requires: Type T is Equality Comparable.

2. Returns: The first iterator i in the range [first,last)
for which the following corresponding conditions hold:
∗i == value, pred(∗i) != false. Returns last if no such
iterator is found.

3. Complexity: At most last−first applications of the cor-
responding predicate.

// Literal translation: will not type−check
template<InputIterator Iter, EqualityComparable T>
Iter find(Iter first, Iter last, const T& value) {

while (first != last && !(∗first == value))
++first;

return first;
}
// Literal translation: complete and correct
template<InputIterator Iter, Predicate<Iter::reference> Pred>
Iter find if(Iter first, Iter last, Pred pred) {

while (first != last && !pred(∗first))
++first;

return first;
}

Figure 7. Specification of the STL find() and find if() algorithms as described in the ISO C++ standard [25, §25.1.2] (left) and its literal
translation into ConceptC++.

including many uses that will work with the existing STL. The
definition of find() contained in ConceptC++ reads:

template<InputIterator Iter, typename T>
where EqualityComparable<Iter::value type, T>
Iter find(Iter first, Iter last, const T& value) {

while (first != last && !(∗first == value))
++first;

return first;
}

Our exercise in stating STL algorithm requirements with concepts
has uncovered several bugs and ambiguities due to the informal
specification style used by the C++ standard. In many cases, the in-
tended requirements are clear in the C++ standard but the libstdc++

implementation was incorrect. Most often, these errors were due to
assumptions made about the relationships between types that were
not specified in the requirements. For instance, the GNU C++ li-
brary contained the following implementation of replace copy()
(with the direct translation from requirements to where clause):

template<InputIterator InIter,
OutputIterator<InIter::value type> OutIter,
CopyConstructible T>

where Assignable<OutIter::reference, T> &&
where EqualityComparable<InIter::value type, T>
OutIter replace copy(InIter first, InIter last, OutIter out,
OutIter replace copy(const T& old val, const T& new val) {

for ( ; first != last; ++first, ++result)
∗result = ∗first == old val ? new val : ∗first;



find.cpp: In function ’Iter std::find(Iter, Iter, const T&)’:
find.cpp:8: error: no match for ’operator==’ in ’*first == value’
.../concepts.h:170: note: candidates are: bool std::InputIterator<_Iter>::operator==(const _Iter&, const _Iter&)
.../concepts.h:170: note: bool std::EqualityComparable<T, T>::operator==(const T&, const T&)
.../concepts.h:170: note: bool std::SignedIntegral<difference_type>::operator==(const difference_type&,

const difference_type&)

Figure 8. ConceptGCC error message produced when attempting to compile the naı̈vely translated version of find() shown on the right-hand
side of Figure 7.

return result;
}

The where clause requires that one can assign both values from the
input sequence and values of type T to the output sequence, even
though the associated type value type of the Input Iterator may
be different from the type T. However, when type-checking this
routine, ConceptGCC produces the following error message:

replace_copy.cpp:15: error: operands to ?:
have different types

The problem, originally noted by Siek and Lumsdaine [58], is
that the requirements to replace copy() do not say that T and the
value type of the input iterator are equivalent or coercible. Since
the vast majority of uses of replace copy() have T and the iterator’s
value type equivalent, it is easy to see how this bug could have gone
undetected. The fix is easy: replace the conditional assignment via
? : with an if-else statement.

We found several other errors within libstdc++ where the im-
plementation assumed type equivalence that is not guaranteed by
the C++ standard. One particularly vexing example occurred in the
sort heap() function, which had the following definition once aug-
mented with a where clause:

template<MutableRandomAccessIterator RAIter>
where { LessThanComparable<Iter::value type> }
void pop heap(RAIter first, RAIter last);

template<MutableRandomAccessIterator Iter>
where LessThanComparable<Iter::value type>
void sort heap(Iter first, Iter last) {

while (last − first > 1)
pop heap(first, last−−);

}

This algorithm is subtly incorrect. Attempting to compile with
ConceptGCC produces the following error message:

sort_heap.cpp:8: error: no matching function for call to
’pop_heap(Iter&, postdecrement_result&)’

The problem in this case is that the postdecrement opera-
tor, used in last−−, is specified to return a value of associated
type postdecrement result, which is convertible to—but distinct
from—the type Iter of last. In the call to pop heap(), this differ-
ence causes a failure in template argument deduction: RAIter is
bound to Iter by the first parameter to pop heap(), but RAIter is
bound to postdecrement result by the second parameter. Again,
fixing the problem once it has been detected is trivial: one can insert
a cast from last−− to Iter.

The last major source of errors we found when defining the
requirements of concepts in the STL is due to the infamous
vector<bool> iterator (Section 4.4.2). The problems with the
vector<bool> iterator arise because the C++ standard incorrectly
states that the vector<bool> iterator is a Random Access Itera-
tor [25, §23.2.5]. This error cannot occur when using concepts: an
attempt to write the concept map definition will result in a compile-
time failure, because the reference type of a vector<bool> iterator
does not meet the requirements of the Forward Iterator concept.

5.3 Backward Compatibility
Backward compatibility of the ConceptC++ STL with programs
written for the existing STL is of paramount importance for two
reasons. First, by providing all of the benefits of ConceptC++
(better error messages, improved library implementations, syntax
remapping) without requiring users to port their code, backward
compatibility improves the chances for adoption of concepts into
real-world use and C++0x. Second, if we are able to apply concepts
to existing STL without significant changes, then it is likely that
they can be similarly applied to many other generic libraries.

We can report that the ConceptC++ STL provides excellent
backward compatibility. The entirety of the libstdc++ test suite
compiles and produces identical results with the ConceptC++ STL
and existing STL, and required only three changes:

1. The ConceptC++ STL defined a name in use by one of the tests
(Integral), requiring the test to use a different identifier.

2. The ConceptC++ STL does not pretend that vector<bool>
iterators model Random Access Iterator.1 One test case that
relied on this idiosyncrasy had to be modified.

3. One type that was used as an output iterator in the example
required the addition of a single concept map to be used with
the ConceptC++ STL algorithms.

We also ran the test suites for several libraries in the C++ Boost
library collection [6], including the graph and iterator adaptor li-
braries that make heavy use of STL constructs, using ConceptC++.
Again, there was a case where a type used as an output iterator
required a concept map to be used with the ConceptC++ STL.

Assuming that we can express the requirements of an existing
generic library using concepts, the major impediment to backward
compatibility is the possibility that users will need to add many
concept maps. We used a combination of implicit concepts (for
trivial concepts such as Copy Constructible or Less Than Compa-
rable) and concept map templates to minimize (to nearly zero) the
number of concept maps that users will be required to write.

In the ConceptC++ STL, the only widely-used concepts that
require explicit concept maps are the iterator concepts. For nearly
all of the iterator concepts (Output Iterator is the only exception),
however, we can write concept map templates that adapt iterators
written for the existing STL into the new iterator concepts. This
process is completely transparent to the user, otherwise porting the
libstdc++ and C++ Boost [6] test suites to the ConceptC++ STL
would have required many concept maps for various user-defined
iterator types.

The key to adapting old-style iterators to take advantage of con-
cepts is in the observation that existing STL iterators already pro-
vide explicit declarations of the concepts they model in the form
of traits [47]: we need only query these traits. Figure 9 illustrates
how old-style forward iterators can be seamlessly mapped into the
iterators of the ConceptC++ STL. The Iterator Traits concept is a

1 In fact, the ConceptC++ can not pretend that vector<bool> iterators are
Random Access Iterators: the compiler will reject the definition of the
concept map.



auto concept IteratorTraits<typename Iter> {
typename iterator category = Iter::iterator category;
typename value type = Iter::value type;
typename difference type = Iter::difference type;
typename pointer = Iter::pointer;
typename reference = Iter::reference;

};
template<typename !Iter>
where { IteratorTraits<Iter>,
where { Convertible<iterator category, input iterator tag>,
where { Convertible<iterator category, forward iterator tag>}
concept map ForwardIterator<Iter> {

typedef Iter::value type value type;
typedef Iter::difference type difference type;
typedef Iter::pointer pointer;
typedef Iter::reference reference;

};

Figure 9. Concept map templates that seamlessly map old-style
STL iterators into ConceptC++ STL iterators, to enable backward
compatibility.

structural concept that extracts all of the types from the existing
STL iterator traits trait class. Most important of all of these is the
iterator category type, which states which concept—Input Itera-
tor, Forward Iterator, etc.—the type models.

Implicit generation of the concept map IteratorTraits<Iter>,
implies that Iter is an iterator of some form. Therefore, we can
declare concept map templates that take any type Iter with an
implicit-generated concept map IteratorTraits<Iter> and query
its iterator category to determine which concepts it models. In
Figure 9, we generate a concept map of Forward Iterator so long as
there is a concept map of Iterator Traits and its iterator category
is convertible to forward iterator tag. The mapping is valid be-
cause the where clause of the Forward Iterator concept map tem-
plate matches precisely the requirements needed to identify a type
as a Forward Iterator in the existing STL. Thus, with the exception
of Output Iterator, types that meet the iterator requirements of the
existing STL will automatically meet the requirements of the Con-
ceptC++ STL with no porting required. We believe that upcoming
extensions to C++ [26] will make it possible to provide the same
automatic mapping for Output Iterator concept maps as well, pro-
viding nearly perfect backward compatibility for existing iterators.

Complete backward compatibility also requires that pre-concept
generic algorithms written using the old iterator interfaces (based
on iterator traits) will continue to function, even with new itera-
tors that expose only the concepts-based interface. For instance, the
following algorithm counts all of the elements in the sequence that
meet some specific criteria:

template<typename InputIterator, typename Predicate>
typename std::iterator traits<InputIterator>::difference type
count if(InputIterator first, InputIterator last, Predicate pred) {

typename std::iterator traits<InputIterator>::difference type
tyn = 0;
for (; first != last; ++first)

if (pred(∗first)) ++n;
return n;

}

One could require that all new iterators expose both a concepts-
based interface (e.g., provide concept maps) and a pre-concept
interface (e.g., specialize iterator traits). However, this places the
burden of backward compatibility on the authors of iterators. Aside
from the problems of maintaining two similar (but incompatible)
interfaces, this approach would never allow the concepts-based
interface to completely replace the existing interface.

template<InputIterator Iter>
struct iterator traits<Iter> {

typedef input iterator tag iterator category;
typedef Iter::value type value type;
typedef Iter::reference reference;
typedef Iter::pointer pointer;
typedef Iter::difference type difference type;

};

Figure 10. Class template partial specializations that seamlessly
map new-style ConceptC++ iterators into the old-style C++ iterator
interface.

Concepts allow us to define a set of class template partial spe-
cializations for iterator traits that provide new, concept-based it-
erators with the old-style interface. Figure 10 illustrates one of
the partial specializations, which provides a suitable iterator traits
definition for any model of the Input Iterator concept. Like the
mapping from existing iterators into the concept system, this map-
ping is seamless and invisible: existing generic algorithms will be
able to access the associated types of new-style iterators through
iterator traits.

With a series of concept maps (illustrated in Figure 9) and class
template partial specializations (illustrated in Figure 10), we are
able to ensure that existing, pre-concept iterators seamlessly inter-
operate with concept-constrained algorithms and that pre-concept
algorithms interoperate with new, concept-based iterators. More-
over, the use of these techniques can simplify the development of
“dual-mode” generic libraries, which provide the same functional-
ity with and without concepts. The ConceptGCC implementation
of the Standard Library is one such library, allowing users to “turn
off” concepts at the library level to provide a pre-concept, C++03-
compliant library. The ability to develop “dual-mode” generic li-
braries is crucial: even if vendors could coordinate the release of
compilers and libraries supporting concepts (which they can’t),
users are still likely to rely on a mix of compilers and libraries,
some of which support concepts and others that do not. The burden
of maintaining the same library for C++ with and without concepts
would be a significant barrier to adoption.

5.4 Summary
We evaluated the design of concepts by translating the ideas
and implementation of the Standard Template Library into Con-
ceptC++. Defining the requirements in the STL using concepts
uncovered errors and ambiguities in both the specification and the
implementation of the STL. In the end, we were able to produce
a concept-enhanced STL that is demonstrably better than the orig-
inal, both from the user’s point of view (better error messages,
clearer abstractions) and from the implementer’s point of view
(improved type checking, much less reliance on arcane template
techniques). Moreover, the concept-enhanced STL provided near-
perfect backward compatibility with programs written using the
existing STL.

6. Related Work
Concepts extend C++ with constraints on type parameters, as well
as with modular type checking and overloading based on these con-
straints. Various mechanisms for constraining polymorphic types
and for overloading are part of many widely-used languages. Our
design has been influenced by prior work in this area. Here, we
present concepts with respect to these mechanisms and languages.

Several object-oriented languages, including Eiffel [39], Java [18],
and C# [40], support constrained generics with subtyping con-
straints. In such languages, interfaces or abstract classes describe a



set of requirements, as method signatures, that types declared to be
subtypes of such classes must satisfy. The constraints on generic
methods and classes are then mutually recursive systems of subtyp-
ing requirements on type parameters, essentially a generalization of
F-bounded polymorphism [8]. There are significant differences be-
tween the above kind of constrained polymorphism and concepts,
including the treatment of associated types, use of subtyping as
the basis of constraints, use of constraints in overloading, and the
compilation model of generic definitions. We discuss compilation
model in Section 4.1, and address the other differences below.

Associated types, as well as requirements on them, are an es-
sential part of concepts. Representing associated types in Java or
C# is less direct: interfaces do not provide type members that could
serve for this purpose. It is possible, however, to express mappings
between types (which is what associated types essentially are), as
well as constraints on associated types, without type members. This
is accomplished with a distinct type parameter, and a set of con-
straints, for each associated type. This approach, however, does
not encapsulate associated types and their constraints into the in-
terfaces; we report how both associated types and constraints on
them must be repeated in all sites where generic interfaces are used
as type parameter constraints [15]. Concepts directly support as-
sociated type requirements in concepts. Note that we have devel-
oped language features to allow associated types in generic inter-
faces [29] in C# or Java-like languages. Moreover, type members
in objects and classes have been extensively studied since the early
work on virtual types [38]. We review this work in [29].

An interesting recent language regarding generic programming
is Scala [50,51]. In particular, Scala’s type system provides abstract
type members, which could serve as associated types of concepts.
Moreover, the latest version of Scala includes a feature referred
to as implicit parameters [49, §7], which can be used to pass
models (in the generic programming sense) to generic functions
either explicitly or implicitly. We plan to do a more comprehensive
analysis of Scala with respect to generic programming in the future.

A type (a set of types, values, operations, etc.) can model a con-
cept that is defined after the definition of the type. Such retroac-
tive modeling is important when composing separately developed
libraries as discussed in [15]. In constrained generics based on
subtyping, the ability of retroactive modeling is tied to the ability
of retroactive subtyping, which is typically not provided in main-
stream object-oriented languages where a subtype relation is nomi-
nal and established via subclassing. Of well-known object-oriented
languages, Cecil [37] supports retroactive subtyping, and the fea-
ture has been suggested for Java as well [4]. Also, mechanisms for
specifying structural subtyping relations have been proposed for
C++ [5] and for Java [33].

Concepts do not build on C++’s subtype relation. In that re-
spect, concepts are similar to constraint mechanisms such as sig-
natures in ML [41], and type classes in Haskell [70]. Comparing
concepts with ML signatures, we note that ML signatures encom-
pass equivalents of associated types, in particular we can observe
the correspondence of same-type constraints to ML’s sharing con-
straints (see manifest types [35] and translucent sums [36]). A ma-
jor difference between concepts and ML signatures is the granu-
larity of parametrization. In ML, signatures are used to constrain
functors, i.e., parametrized modules, not parametrized functions.
Generic functions very seldom share the same parametrization and
requirements, so each function would have to be wrapped in a mod-
ule of its own. Furthermore, functors must be explicitly instanti-
ated with type arguments, making their use quite heavy-weight,
whereas C++ provide implicit instantiation, with the type arguments
deduced from the types of the actual arguments.

In ML, checking that the requirements of a signature are satis-
fied is based purely on structural conformance. Our concept exten-

sions support both structural and nominal modeling relations (cor-
responding to implicit and explicit concepts, respectively). While
implicit concepts are not (strictly speaking) necessary, this feature
has been found to reduce the number of “trivial” concept maps sig-
nificantly. However, explicit concepts are crucial for concepts that
differ only semantically, as illustrated in Section 3.4.1. In particu-
lar, often a concept refinement (e.g. Forward Iterator refining Input
Iterator) only adds more semantic requirements, having no syntac-
tic difference between the concepts. Thus the structural properties
of types do not suffice to uniquely determine which concepts the
types model. Further details of the use of ML for generic program-
ming can be found in [15].

Similar to concepts, Haskell type classes define a set of required
functions that instances (models) of the type class must provide.
Subtyping does not enter into the picture. Furthermore, type classes
constrain individual functions, rather than modules. In their stan-
dard form, type classes do not support associated types, but recent
research [9, 10] addresses this issue. The most notable difference
is Haskell’s support for type inference, in particular inferring the
constraints of a generic function from its body. To ensure that the
constraints of a generic function can be uniquely determined, a sig-
nificant restriction is placed on type classes: each function name
can occur only once in all type classes visible in the program. This
requires foresight, and is problematic in importing type class defi-
nitions from separately defined libraries.

Concepts participate in overload resolution. This is contrary to
Java and C# where constraints are ignored when selecting the best
matching overload: two overloads of a function that only differ in
their constraints are considered ambiguous. Overloading in Con-
ceptC++ differs from ML’s or Haskell’s behavior too, since poly-
morphic functions in these languages cannot be overloaded. In
Haskell, all overloading occurs by providing different instance dec-
larations for a type class, and thus only functions defined within
some type class are overloadable. In ConceptC++ one overloaded
function is considered to be a specialization of another if its concept
constraints imply the constraints of the other one, as described in
Section 3.3. This is to provide direct support for algorithm special-
ization, which is an essential part of the generic programming ap-
proach to software library development. We analyze concept-based
overloading and specialization in detail in [27].

7. Conclusion
We propose new language features for C++, based on concepts, that
provide (nearly) modular type checking for templates and directly
support Generic Programming. The addition of concepts to C++
libraries brings an immediate benefit to library users by drastically
shortening and simplifying template error messages. In the longer
term, concepts make it easier to design and implement template
libraries, replacing a grab-bag of template tricks with a single,
coherent language feature.

ConceptGCC [19], built on the GNU C++ compiler, imple-
ments concepts and associated features as described here. Using
ConceptGCC, we have reimplemented the C++ Standard Template
Library using concepts. This process of formalizing the require-
ments of STL using concepts uncovered several deficiencies in the
semi-formal specification of C++ [25] and detected several new
bugs in the GNU implementation. The resulting STL using con-
cepts provides the same functionality as the existing STL, with
nearly-perfect backward compatibility, but greatly improves the
user experience. ConceptGCC is available online at http://www.
generic-programming.org/software/ConceptGCC.



8. Future Work
The current design and implementation of concepts draw from a
larger on-going effort led by the authors [12,22,23,53,64]. The aim
of this work is the inclusion of concepts—in a form very similar to
what is presented here—into C++0x, the next ISO C++ standard.

To make that happen, we will complete ConceptGCC, im-
plementing the remaining few features of ConceptC++. Further-
more, we must document our design to the extent that it can be
(re)implemented in commercial C++ compilers and used by prac-
ticing programmers. The final word on the design of concepts in
C++0x will be determined by the committee and the ISO national
representatives. Their criteria include completeness, simplicity, and
stability of the design as well as performance and smooth integra-
tion with the rest of the language and the standard library.

To further evaluate expressiveness and usability, we will port
additional generic C++ libraries to use concepts and tune their per-
formance and that of ConceptGCC. Concepts must not introduce
any run-time overhead compared to unconstrained templates. We
will evaluate the trade-offs between use patterns and signatures. In
general, we will continue to try to simplify our concept mechanisms
to make it easier for programmers to use concepts effectively.

To increase the scope of analysis and optimization, we will
explore the notion of attaching semantic properties to concepts, to
permit semantic descriptions of abstractions and aid compilers in
concept-based optimization [52].
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