Lecture 5
ECEN 4517/5517

Experiment 3

Buck converter
Battery charge controller
Peak power tracker

Gate driver with isolation transformer

Pulse-width modulator
Microcontroller
Sensors

Peak power tracking and battery charge control
Battery current and voltage
Due dates

Next week:
 Exp. 3 part 2 prelab assignment: MPPT algorithm

Late assignments will not be accepted.
Due at noon next Tuesday in D2L

This week:
 Finish Exp. 3 part 1!
Exp. 3, Part 1
Demonstrate buck power stage
Heatsinks

The power semiconductors generally require heatsinks. Example—from the HUF35371 (our 55 V, 34 mΩ MOSFET) datasheet:

<table>
<thead>
<tr>
<th>THERMAL SPECIFICATIONS</th>
<th>$R_{\theta JC}$</th>
<th>(Figure 3)</th>
<th>-</th>
<th>-</th>
<th>1.6</th>
<th>°C/W</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Resistance Junction to Case</td>
<td>$R_{\theta JA}$</td>
<td>TO-220, TO-263</td>
<td>-</td>
<td>-</td>
<td>62</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Multiply thermal resistance by power loss to find temperature rise

With no heatsink, the thermal resistance is quite high (62°C/W)
With a 25°C ambient temperature and no heatsink, this device will reach the rated limit of 175°C if its power dissipation is

$$P_{\text{loss}} = (175°C - 25°C)/(62°C/W) = 2.4 \text{ W}$$

A heatsink can lower this temperature rise considerably. The junction-to-case thermal resistance is only 1.6 °C/W.

For reliability reasons, we like to limit temperature rises to much lower values—perhaps a few tens of °C
Heatsinks:
Thermal model

Thermal equivalent circuit model

From the graph, 2.4 W of loss causes a 30 °C rise, which would make the heatsink operate at 55°C for a 25°C ambient.
Plus junction-to-case temperature rise of \((1.6°C/W)(2.4 W) = 4°C\)
PSPICE simulation
Exp. 3 Part 1: open loop

- Use your PV model from Exp. 1
- Replace buck converter switches with averaged switch model
- CCM-DCM1 and other PSPICE model library elements are linked on course web page
Exp. 3 Part 2

- Implement maximum power point tracking algorithm
- Demonstrate on PV cart outside
Sensing the battery current and voltage
Exp. 3 Part 2
INA194 High-side current sense IC

INA194: gain = 50V/V

![GAIN PLOT](image)

- Gain values: 100V/V, 50V/V, 20V/V
- Voltage ranges: V_{IN+} from -16V to +80V, V_{IN-} from +2.7V to +18V

Diagram of INA194 circuit with components labeled and connections detailed.
About the INA194

Must bypass power supply pins!

Filtering the waveforms:

\[
\text{Gain Error}\% = 100 - \left(100 \times \frac{5\, \text{k}\Omega}{5\, \text{k}\Omega + R_{\text{FILT}}}\right)
\]

- Use twisted pair to transmit signal from INA194 output to your MSP430 board
- An \(R-C\) filter will likely be necessary at A/D input of MSP430
Maximum Power Point Tracking

Automatically operate the PV panel at its maximum power point

Some possible MPPT algorithms:

• Perturb and observe

• Periodic scan

• Newton’s method, or related hill-climbing algorithms

• What is the control variable? Where is the power measured?

Next week’s prelab assignment: propose a MPPT algorithm, submit flowchart/block diagram
Example MPPT: Perturb and Observe

- A well-known approach
- Works well if properly tuned
- When not well tuned, maximum power point tracker (MPPT) is slow and can get confused by rapid changes in operating point
- A common choice: “control” is switch duty cycle

Basic algorithm

Measure power
Loop:
- Perturb the operating point in some direction
- Wait for system to settle
- Measure power
- Did the power increase?
 - Yes: retain direction for next perturbation
 - N: reverse direction for next perturbation

Repeat
Example MPPT: Sweep

Start at $V = \text{minimum PV voltage}$. Set $P_{\text{max}} = 0$.

Loop:
- Wait for system transients to settle
- Measure power P. Is $P > P_{\text{max}}$?
 - Yes: set $P_{\text{max}} = P$, $V_{\text{opt}} = V$
 - Increase V by one step
- Repeat until $V = V_{\text{oc}}$
- Set $V = V_{\text{opt}}$. Wait some time, then sweep again.
ADC10: The 10-Bit A/D Converter of the MSP430

Key features:
- Multiplexed inputs
- Sample and hold circuit
- Successive approximation register, driven by selectable clock
- Selectable reference sources
- Buffered output memory
- 10 bit or 8 bit conversion
Successive Approximations

- After the input signal has been sampled, the 10-bit SAR requires 11 clock cycles to generate an output
- Compare analog input with references
- The MSP430 uses a switched capacitor scheme to perform the comparisons
- See *MSP430x5xx Family User’s Guide*, Ch. 27

Capacitor bypassing is required

What the User’s Guide recommends:

Also need capacitance at analog input pin
Setting up the A/D Converter ADC10

// Configure ADC10
ADC10CTL0 = ADC10SHT_2 + ADC10ON; // sample time of 16 clocks, turn on
 // use internal ADC 5 MHz clock
ADC10CTL1 = ADC10SHP + ADC10CONSEQ_0; // software trigger to start a sample
 // single channel conversion
ADC10CTL2 = ADC10RES; // use full 10 bit resolution
ADC10MCTL0 = ADC10SREF_1 + ADC10INCH_5; // ADC10 ref: use VREF and AVSS
 // input channel A5 (pin 10)

// Configure internal reference VREF
while(REFCTL0 & REFGENBUSY); // if ref gen is busy, wait
REFCTL0 |= REFVSEL_0 + REFON; // select VREF = 1.5 V, turn on
_delay_cycles(75); // delay for VREF to settle

The above code sets up the 10-bit ADC with A5 as its only input, with 1.5 V giving a reading of $2^{10} - 1$, and 0 V giving a reading of 0. Each reading will employ a sampling window of 16 ADC clocks = 3.2 μsec.
Sampling the ADC input

ADC10CTL0 |= ADC10ENC + ADC10SC; // sampling and conversion start
while(ADC10CTL1 & ADC10BUSY); // wait for completion
X = ADC10MEM0; // ADC10MEM0 contains result

The above code is simple and a good start. See CCS5 code examples for use of interrupts that do not require the processor to wait during the conversion time.